
Applied Regression Analysis
A Second Course in Business and Economic Statistics
Résumé
Applied Regression Analysis focuses on the application of regression to real data and examples while employing commercial statistical and spreadsheet software. Designed for both business/economics undergraduates and MBAs, this text provides all of the core regression topics as well as optional topics including ANOVA, Time Series Forecasting, and Discriminant Analysis. While only a prior introductory statistics course is required, a review of all necessary basic statistics is provided in chapter 2. The text emphasizes the importance of understanding the assumptions of the regression model, knowing how to validate a selected model for these assumptions, knowing when and how regression might be useful in a business setting, and understanding and interpreting output from statistical packages and spreadsheets.
L'auteur - Terry Dielman
Terry Dielman is professor of Decision Sciences at Texas Christian University. Terry received his Ph.D. at the University of Michigan (Business Statistics), his M.S. at the University of Cincinnati (Mathematics) and his B.A. at Emporia State University (Mathematics). His recent research focuses on Regression Analysis, Time Series Forecasting, Robust Statistical Procedures and the Analysis of Pooled Cross-Sectional and Time Series Data. His recent publications include “Bootstrap versus Traditional Hypothesis Testing Procedures for Coefficients in Least Absolute Value Regression” in the JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION. He participates in the Editorial Board of the Journal of Business and Management, and consults for Forecasting Seminars and for various law firms.
Sommaire
- An Introduction to Regression Analysis
- Review of Basic Statistical Concepts
- Simple Regression Analysis
- Multiple Regression Analysis
- Fitting Curves to Data
- Assessing the Assumptions of the Regression Model
- Using Indicator and Interaction Variables
- Variable Selection
- An Introduction to Analysis of Variance
- Qualitative Dependent Variables: An Introduction to Discriminant Analysis and Logistic Regression
- Forecasting Methods for Time-Series Data
- A: Summation Notation
- B: Statistical Tables
- C: A Brief Introduction to MINITAB, Microsoft Excel, and SAS
- D: Matrices and their Application to Regression Analysis
- E: Solutions to Selected Odd-Numbered Exercises
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Thomson |
Auteur(s) | Terry Dielman |
Parution | 20/09/2004 |
Nb. de pages | 450 |
Format | 19 x 24 |
Couverture | Relié |
Poids | 950g |
Intérieur | Noir et Blanc |
EAN13 | 9780534465483 |
ISBN13 | 978-0-534-46548-3 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Biostatistiques
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Statistiques Analyse de données
- Entreprise & Droit Economie Maths pour l'économie
- Entreprise & Droit Enseignement Maths pour économie, gestion et finance