
Branch-and-Bound Applications in Combinatorial Data Analysis
Michael J. Brusco, Stephanie Stahl - Collection Statistics and Computing
Résumé
There are a variety of combinatorial optimization problems that are relevant to the examination of statistical data. Combinatorial problems arise in the clustering of a collection of objects, the seriation (sequencing or ordering) of objects, and the selection of variables for subsequent multivariate statistical analysis such as regression. The options for choosing a solution strategy in combinatorial data analysis can be overwhelming. Because some problems are too large or intractable for an optimal solution strategy, many researchers develop an over-reliance on heuristic methods to solve all combinatorial problems. However, with increasingly accessible computer power and ever-improving methodologies, optimal solution strategies have gained popularity for their ability to reduce unnecessary uncertainty. In this monograph, optimality is attained for nontrivially sized problems via the branch-and-bound paradigm.
For many combinatorial problems, branch-and-bound approaches have been proposed and/or developed. However, until now, there has not been a single resource in statistical data analysis to summarize and illustrate available methods for applying the branch-and-bound process. This monograph provides clear explanatory text, illustrative mathematics and algorithms, demonstrations of the iterative process, psuedocode, and well-developed examples for applications of the branch-and-bound paradigm to important problems in combinatorial data analysis. Supplementary material, such as computer programs, are provided on the world wide web.
L'auteur - Michael J. Brusco
Dr. Brusco is a Professor of Marketing and Operations Research at Florida State University, an editorial board member for the Journal of Classification, and a member of the Board of Directors for the Classification Society of North America.
L'auteur - Stephanie Stahl
Stephanie Stahl is an author and researcher with years of experience in writing, editing, and quantitative psychology research.
Sommaire
- An Introduction to Branch-and-Bound Methods for Partitioning
- Minimum-Diameter Partitioning
- Minimum Within-Cluster Sums of Dissimilarities Partitioning
- Minimum Within-Cluster Sums of Squares Partitioning
- Multiobjective Partitioning
- Introduction to the Branch-and-Bound Paradigm for Seriation
- Maximization of a Dominance Index
- Seriation--Maximization of Gradient Indices
- Seriation--Unidimensional Scaling
- Seriation--Multiobjective Seriation
- An Introduction to Branch-and-Bound Methods for Variable Selection
- Variable Selection for Cluster Analysis
- Variable Selection for Regression Analysis
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Michael J. Brusco, Stephanie Stahl |
Collection | Statistics and Computing |
Parution | 08/09/2005 |
Nb. de pages | 220 |
Format | 16 x 24 |
Couverture | Broché |
Poids | 460g |
Intérieur | Noir et Blanc |
EAN13 | 9780387250373 |
ISBN13 | 978-0-387-25037-3 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Biostatistiques
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Statistiques Analyse de données