Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Branch-and-Bound Applications in Combinatorial Data Analysis
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Branch-and-Bound Applications in Combinatorial Data Analysis

Branch-and-Bound Applications in Combinatorial Data Analysis

Michael J. Brusco, Stephanie Stahl - Collection Statistics and Computing

220 pages, parution le 08/09/2005

Résumé

There are a variety of combinatorial optimization problems that are relevant to the examination of statistical data. Combinatorial problems arise in the clustering of a collection of objects, the seriation (sequencing or ordering) of objects, and the selection of variables for subsequent multivariate statistical analysis such as regression. The options for choosing a solution strategy in combinatorial data analysis can be overwhelming. Because some problems are too large or intractable for an optimal solution strategy, many researchers develop an over-reliance on heuristic methods to solve all combinatorial problems. However, with increasingly accessible computer power and ever-improving methodologies, optimal solution strategies have gained popularity for their ability to reduce unnecessary uncertainty. In this monograph, optimality is attained for nontrivially sized problems via the branch-and-bound paradigm.

For many combinatorial problems, branch-and-bound approaches have been proposed and/or developed. However, until now, there has not been a single resource in statistical data analysis to summarize and illustrate available methods for applying the branch-and-bound process. This monograph provides clear explanatory text, illustrative mathematics and algorithms, demonstrations of the iterative process, psuedocode, and well-developed examples for applications of the branch-and-bound paradigm to important problems in combinatorial data analysis. Supplementary material, such as computer programs, are provided on the world wide web.

L'auteur - Michael J. Brusco

Dr. Brusco is a Professor of Marketing and Operations Research at Florida State University, an editorial board member for the Journal of Classification, and a member of the Board of Directors for the Classification Society of North America.

L'auteur - Stephanie Stahl

Stephanie Stahl is an author and researcher with years of experience in writing, editing, and quantitative psychology research.

Sommaire

  • An Introduction to Branch-and-Bound Methods for Partitioning
  • Minimum-Diameter Partitioning
  • Minimum Within-Cluster Sums of Dissimilarities Partitioning
  • Minimum Within-Cluster Sums of Squares Partitioning
  • Multiobjective Partitioning
  • Introduction to the Branch-and-Bound Paradigm for Seriation
  • Maximization of a Dominance Index
  • Seriation--Maximization of Gradient Indices
  • Seriation--Unidimensional Scaling
  • Seriation--Multiobjective Seriation
  • An Introduction to Branch-and-Bound Methods for Variable Selection
  • Variable Selection for Cluster Analysis
  • Variable Selection for Regression Analysis
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Michael J. Brusco, Stephanie Stahl
Collection Statistics and Computing
Parution 08/09/2005
Nb. de pages 220
Format 16 x 24
Couverture Broché
Poids 460g
Intérieur Noir et Blanc
EAN13 9780387250373
ISBN13 978-0-387-25037-3

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription