
Functional Data Analysis
Jim Ramsay, Bernard Silverman - Collection Springer Series In Statistics
Résumé
Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drwan from growth analysis, meterology, biomechanics, equine science, economics, and medicine.
The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields. Much of the material is based on the authors' own work, some of which appears here for the first time.
Written for: Researchers, graduate students
L'auteur - Jim Ramsay
Ramsay is Professor of Psychology at McGill University, and is an international authority on many aspects of multivariate analysis. He was elected President of the Statistical Society of Canada for the term 2002-3 and is a holder of the Society's Gold Medal for his work in functional data analysis. His statistical work draws on his collaborations with researchers in speech articulation, biomechanics,
L'auteur - Bernard Silverman
Silverman, B.W., University of Bristol, UK
Sommaire
- Introduction
- Notation and Techniques
- Representing Functional Data as Smooth Functions
- The Roughness Penalty Approach
- The Registration and Display of Functional Data
- Principal Components Analysis for Functional Data
- Regularized Principal Components Analysis
- Principal Components Analysis of Mixed Data
- Functional Linear Models
- Functional Linear Models for Scalar Responses
- Functional Linear Modesl for Functional Responses
- Canonical Correlation and Discriminant Analysis
- Differential Operators in Functional Data Analysis
- Principal Differential Analysis
- More General Roughness Penalties
- Some Perspectives on FDA
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Jim Ramsay, Bernard Silverman |
Collection | Springer Series In Statistics |
Parution | 12/07/2005 |
Édition | 2eme édition |
Nb. de pages | 436 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 770g |
Intérieur | Noir et Blanc |
EAN13 | 9780387400808 |
ISBN13 | 978-0-387-40080-8 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Biostatistiques
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Statistiques Analyse de données