
Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics
Volume 119
Tian Ma, Shouhong Wang - Collection Mathematical Surveys and Monographs
Résumé
This monograph presents a geometric theory for incompressible flow and its applications to fluid dynamics. The main objective is to study the stability and transitions of the structure of incompressible flows and its applications to fluid dynamics and geophysical fluid dynamics. The development of the theory and its applications goes well beyond its original motivation of the study of oceanic dynamics.
The authors present a substantial advance in the use of geometric and topological methods to analyze and classify incompressible fluid flows. The approach introduces genuinely innovative ideas to the study of the partial differential equations of fluid dynamics. One particularly useful development is a rigorous theory for boundary layer separation of incompressible fluids.
The study of incompressible flows has two major interconnected parts. The first is the development of a global geometric theory of divergence-free fields on general two-dimensional compact manifolds. The second is the study of the structure of velocity fields for two-dimensional incompressible fluid flows governed by the Navier-Stokes equations or the Euler equations.
Motivated by the study of problems in geophysical fluid dynamics, the program of research in this book seeks to develop a new mathematical theory, maintaining close links to physics along the way. In return, the theory is applied to physical problems, with more problems yet to be explored.
The material is suitable for researchers and advanced graduate students interested in nonlinear PDEs and fluid dynamics.
Readership : Advanced graduate students and research mathematicians interested in nonlinear PDEs and fluid dynamics.
L'auteur - Tian Ma
Tian Ma, Sichuan University, Chengdu, China
L'auteur - Shouhong Wang
Shouhong Wang, Indiana University, Bloomington, IN
Sommaire
- Introduction
- Structure classification of divergence-free vector fields
- Structural stability of divergence-free vector fields
- Block stability of divergence-free vector fields on manifolds with nonzero genus
- Structural stability of solutions of Navier-Stokes equations
- Structural bifurcation for one-parameter families of divergence-free vector fields
- Two examples
- Bibliography
Caractéristiques techniques
PAPIER | |
Éditeur(s) | American Mathematical Society (AMS) |
Auteur(s) | Tian Ma, Shouhong Wang |
Collection | Mathematical Surveys and Monographs |
Parution | 27/10/2005 |
Nb. de pages | 288 |
Format | 18 x 26,5 |
Couverture | Relié |
Poids | 655g |
Intérieur | Noir et Blanc |
EAN13 | 9780821836934 |
ISBN13 | 978-0-8218-3693-4 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Géométrie
- Sciences Mathématiques Mathématiques appliquées
- Sciences Physique Physique fondamentale Etats de la matière
- Sciences Physique Mécanique Mécanique des fluides
- Sciences Physique Echanges thermiques Thermodynamique
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques