
Multivariate Dispersion, Central Regions, and Depth
The Lift Zonoid Approach
Karl Mosler - Collection Lecture Notes in Statistics
Résumé
The lift zonoid approach is based on a new representation of probability measures: a d-variate
probability measure is represented by a convex set, its lift zonoid. First, lift zonoids are useful in data analysis to describe an empirical distribution by central (so- called trimmed) regions. They give rise to a concept of data depth related to the mean which is also useful in nonparametric tests for location and scale. Second, for comparing random vectors, the set inclusion of lift zonoids
defines a stochastic order that reflects the dispersion of random vectors. This has many applications to stochastic comparison problems in economics and other fields.
This monograph ves the first account in book form of the theory of lift zonoids and demonstrates its usefulness in multivariate analysis. Chapter 1 offers the reader an informal introduction to basic ideas, Chapter 2 presents a comprehensive investigation into the theory. The remaining seven chapters treat various applications of the lift zonoid approach and may be separately studied. Readers are assumed to have a firm grounding in probability at the graduate level.
L'auteur - Karl Mosler
Mosler, K., Universität zu Köln, Germany
Karl Mosler is Professor of Statistics and Econometrics at
the University of Cologne. He is Editor of the Allgemeines
Statistisches Archive, Journal of the German Statistical
Society, and has authored numerous research articles and
four books (all with Springer-Verlag) in statistics and
operations research.
Sommaire
- Introduction
- Zonoids and lift zonoids
- Central regions
- Data depth
- Inference based on data depth
- Depth of hyperplanes
- Volume statistics
- Orderings and indices of dispersion
- Measuring economic disparity and concentration.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Karl Mosler |
Collection | Lecture Notes in Statistics |
Parution | 05/09/2002 |
Nb. de pages | 306 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 458g |
Intérieur | Noir et Blanc |
EAN13 | 9780387954127 |
ISBN13 | 978-0-387-95412-7 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse