
Nonmesurable Sets and Functions
Alexander Kharazishvili - Collection Mathemetical Studies
Résumé
The book is devoted to various constructions of sets which are nonmeasurable with respect to invariant (more generally, quasi-invariant) measures. Our starting point is the classical Vitali theorem stating the existence of subsets of the real line which are not measurable in the Lebesgue sense. This theorem stimulated the development of the following interesting topics in mathematics: 1. Paradoxical decompositions of sets in finite-dimensional Euclidean spaces; 2. The theory of non-real-valued-measurable cardinals; 3. The theory of invariant (quasi-invariant) extensions of invariant (quasi-invariant) measures. These topics are under consideration in the book. The role of nonmeasurable sets (functions) in point set theory and real analysis is underlined and various classes of such sets (functions) are investigated . Among them there are: Vitali sets, Bernstein sets, Sierpinski sets, nontrivial solutions of the Cauchy functional equation, absolutely nonmeasurable sets in uncountable groups, absolutely nonmeasurable additive functions, thick uniform subsets of the plane, small nonmeasurable sets, absolutely negligible sets, etc. The importance of properties of nonmeasurable sets for various aspects of the measure extension problem is shown. It is also demonstrated that there are close relationships between the existence of nonmeasurable sets and some deep questions of axiomatic set theory, infinite combinatorics, set-theoretical topology, general theory of commutative groups. Many open attractive problems are formulated concerning nonmeasurable sets and functions.
L'auteur - Alexander Kharazishvili
Alexander Kharazishvili , Tbilisi State University, Tbilisi, Republic of Georgia.
Sommaire
- The Vitali theorem
- The Bernstein construction
- Nonmeasurable sets associated with Harnel bases
- The Pubini theorem and nonmeasurable sets
- Small nonmeasurable sets
- Strange subsets of the Euclidean plane
- Some special constructions of nonmeasurable sets
- The generalized Vitali construction
- Selectors associated with countable subgroups
- Selectors associated with uncountable subgroups
- Absolutely nonmeasurable sets in groups
- Ideals producing nonmeasurable unions of sets
- Measurability properties of subgroups of a given group
- Groups of rotations and nonmeasurable sets
- Nonmeasurable sets associated with filters
- Appendix 1 Logical aspects of the existence of nonmeasurable sets
- Appendix 2 Some facts from the theory of commutative groups
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Elsevier |
Auteur(s) | Alexander Kharazishvili |
Collection | Mathemetical Studies |
Parution | 01/07/2004 |
Nb. de pages | 338 |
Format | 16,5 x 24,5 |
Couverture | Relié |
Poids | 780g |
Intérieur | Noir et Blanc |
EAN13 | 9780444516268 |
ISBN13 | 978-0-444-51626-8 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des groupes
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Logique
- Sciences Mathématiques Mathématiques par matières Logique Algèbre de Boole
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques