Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Regression Models for Time Series Analysis
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Regression Models for Time Series Analysis

Regression Models for Time Series Analysis

Benjamin Kedem, Konstantinos Fokianos

338 pages, parution le 18/10/2002

Résumé

A thorough review of the most current regression methods in time series analysis
Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis.
Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data.
The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements.
Notably, the book covers:

  • Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling
  • Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm
  • Prediction and interpolation
  • Stationary processes

Contents
  • Dedication
  • Preface
  • Times Series Following Generalized Linear Models
  • Regression Models for Binary Time Series
  • Regression Models for Categorical Time Series
  • Regression Models for Count Time Series
  • Other Models and Alternative Approaches
  • State Space Models
  • Prediction and Interpolation
  • Appendix: Elements of Stationary Processes
  • References
  • Index

L'auteur - Benjamin Kedem

BENJAMIN KEDEM, PhD, is Professor of Mathematics at the University of Maryland.

L'auteur - Konstantinos Fokianos

KONSTANTINOS FOKIANOS, PhD, is Assistant Professor in the Department of Mathematics and Statistics at the University of Cyprus.

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) Benjamin Kedem, Konstantinos Fokianos
Parution 18/10/2002
Nb. de pages 338
Format 16 x 24
Couverture Broché
Poids 635g
Intérieur Noir et Blanc
EAN13 9780471363552
ISBN13 978-0-471-36355-2

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription