
Sensivity analysis in practice
A guide to assessing scientific models
Andrea Saltelli, Stefano Tarantola
Résumé
Sensitivity analysis is the study of how variation in the output of a statistical model can be apportioned, qualitatively or quantitatively, to different sources of variation. It should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. Choosing the most appropriate method of sensitivity analysis for a particular model can be complex, and depends on a number of factors. Sensitivity Analysis in Practice guides applied scientists through their modelling problem enabling them to choose and apply the most appropriate sensitivity analysis method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It includes discussion of implementation of the methods using SIMLAB - freely available sensitivity analysis software.
- Provides an accessible overview of the most widely used sensitivity analysis methods.
- Covers a range of methodologies, including variance-based methods, Bayesian uncertainty estimation, selected screening methods and Monte Carlo filtering.
- Opens with a detailed worked example to explain the motivation behind methods described.
- Includes a range of further worked examples to illustrate the practical applications.
- Discusses implementation of the methods using SIMLAB - freely available sensitivity analysis software.
- Contains a large number of references to sources for further reading.
- Supported by a Website featuring a SIMLAB download, data sets and additional material.
Sensitivity Analysis in Practice is primarily aimed at researchers and practitioners working in scientific modelling from statistics, mathematics, medicine, and environmental science. The book is suitable for applied scientists working with statistical models in virtually any discipline, including economics, biology, chemistry and engineering, as well as graduate students of statistical modelling.
Sommaire
- A worked example.
- Global sensitivity analysis for importance assessment.
- Test cases.
- The screening exercise.
- Methods based on decomposing the variance of the output.
- Sensitivity analysis in diagnostic modelling: monte carlo filtering and regionalised sensitivity analysis, bayesian uncertainty estimation and global sensitivity analysis.
- How to use simlab.
- Famous quotes: sensitivity analysis in the scientific discourse.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Wiley |
Auteur(s) | Andrea Saltelli, Stefano Tarantola |
Parution | 10/03/2004 |
Nb. de pages | 232 |
Format | 15,5 x 23,5 |
Couverture | Relié |
Poids | 451g |
Intérieur | Noir et Blanc |
EAN13 | 9780470870938 |
ISBN13 | 978-0-470-87093-8 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Biostatistiques
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Statistiques Analyse de données
- Sciences Mathématiques Logiciels de calcul
- Sciences Physique Mécanique Méthodes numériques