Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Statistical Learning Theory and Stochastic Optimization
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Statistical Learning Theory and Stochastic Optimization

Statistical Learning Theory and Stochastic Optimization

Ecole d'Eté de Probabilités de Saint-Flour XXXI - 2001

Olivier Catoni - Collection Lectures Notes in Mathematics

272 pages, parution le 13/10/2004

Résumé

Lecture Notes in Mathematics

This series reports on new developments in mathematical research and teaching - quickly, informally and at a high level.The type of material considered for publication includes

  • Research monographs
  • Lectures on a new field or presentations of a new angle in a classical field
  • Summer schools and intensive courses on topics of current research

Texts that are out of print but still in demand may also be considered.

The timeliness of a manuscript is sometimes more important than its form, which may in such cases be preliminary or tentative.

Details of the editorial policy can be found on the inside front-cover of a current volume. We recommend contacting the publisher or the series editors at an early stage of your project. Addresses are given on the inside back-cover.

Manuscripts should be prepared according to Springer-Verlag's standard specifications. LaT|iX style files may be found at www.springeronline.com [click on <Mathematics>, then on <For Authors> and look for <Macro Packages for books>]. Style files for other TeX-versions, and additional technical instructions, if necessary, are available on request from: lnm@springer.de.

Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong" (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adoptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.

Sommaire

  • Universal lossless data compression
  • Links between data compression and statistical estimation
  • Non cumulated mean risk
  • Gibbs estimators
  • Randomized estimators and empirical complexity
  • Deviation inequalities
  • Markov chains with exponential transitions
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Olivier Catoni
Collection Lectures Notes in Mathematics
Parution 13/10/2004
Nb. de pages 272
Format 15,5 x 23,5
Couverture Broché
Poids 442g
Intérieur Noir et Blanc
EAN13 9783540225720

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription