Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Statistical Methods for Spatio-temporal Systems
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Statistical Methods for Spatio-temporal Systems

Statistical Methods for Spatio-temporal Systems

Barbel Finkenstadt, Leonhard Held, Valerie Isham - Collection Monographs on Statistics and Applied Probability

300 pages, parution le 30/10/2006

Résumé

  • Presents a variety of statistical methods, including likelihood-based, nonparametric smoothing, spectral, Fourier, wavelet, and Markov chain Monte Carlo
  • Describes recent advances in space-time covariance functions and stochastic growth models based on spatio-temporal point processes and Lévy bases
  • Covers key topics, such as point processes, dynamics, modeling, data analysis, Bayesian methods, and geostatistics
  • Illustrates methods with color images as well as real-world examples, case studies, and applications from epidemiology, geology, and climatology

Statistical Methods for Spatio-Temporal Systems presents current statistical research issues on spatio-temporal data modeling and will promote advances in research and a greater understanding between the mechanistic and the statistical modeling communities.

Contributed by leading researchers in the field, each self-contained chapter starts with an introduction of the topic and progresses to recent research results. Presenting specific examples of epidemic data of bovine tuberculosis, gastroenteric disease, and the U.K. foot-and-mouth outbreak, the first chapter uses stochastic models, such as point process models, to provide the probabilistic backbone that facilitates statistical inference from data. The next chapter discusses the critical issue of modeling random growth objects in diverse biological systems, such as bacteria colonies, tumors, and plant populations. The subsequent chapter examines data transformation tools using examples from ecology and air quality data, followed by a chapter on space-time covariance functions. The contributors then describe stochastic and statistical models that are used to generate simulated rainfall sequences for hydrological use, such as flood risk assessment. The final chapter explores Gaussian Markov random field specifications and Bayesian computational inference via Gibbs sampling and Markov chain Monte Carlo, illustrating the methods with a variety of data examples, such as temperature surfaces, dioxin concentrations, ozone concentrations, and a well-established deterministic dynamical weather model.

L'auteur - Barbel Finkenstadt

Bärbel Finkenstadt University of Warwick, Coventry, UK

L'auteur - Leonhard Held

Leonhard Held:University of Munich, Munich, Germany

L'auteur - Valerie Isham

Valerie Isham University College, London, UK

Sommaire

  • Spatio-Temporal Point Processes: Methods and Applications
  • Spatio-Temporal Modeling-With a View to Biological Growth
  • Using Transforms to Analyze Space-Time Processes
  • Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry
  • Space-Time Modeling of Rainfall for Continuous Simulation
  • A Primer on Space-Time Modeling from a Bayesian Perspective
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Chapman and Hall / CRC
Auteur(s) Barbel Finkenstadt, Leonhard Held, Valerie Isham
Collection Monographs on Statistics and Applied Probability
Parution 30/10/2006
Nb. de pages 300
Format 16,5 x 24,5
Couverture Relié
Poids 570g
Intérieur Noir et Blanc
EAN13 9781584885931
ISBN13 978-1-58488-593-1

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription