
Statistical Methods for Spatio-temporal Systems
Barbel Finkenstadt, Leonhard Held, Valerie Isham - Collection Monographs on Statistics and Applied Probability
Résumé
- Presents a variety of statistical methods, including likelihood-based, nonparametric smoothing, spectral, Fourier, wavelet, and Markov chain Monte Carlo
- Describes recent advances in space-time covariance functions and stochastic growth models based on spatio-temporal point processes and Lévy bases
- Covers key topics, such as point processes, dynamics, modeling, data analysis, Bayesian methods, and geostatistics
- Illustrates methods with color images as well as real-world examples, case studies, and applications from epidemiology, geology, and climatology
Statistical Methods for Spatio-Temporal Systems presents current statistical research issues on spatio-temporal data modeling and will promote advances in research and a greater understanding between the mechanistic and the statistical modeling communities.
Contributed by leading researchers in the field, each self-contained chapter starts with an introduction of the topic and progresses to recent research results. Presenting specific examples of epidemic data of bovine tuberculosis, gastroenteric disease, and the U.K. foot-and-mouth outbreak, the first chapter uses stochastic models, such as point process models, to provide the probabilistic backbone that facilitates statistical inference from data. The next chapter discusses the critical issue of modeling random growth objects in diverse biological systems, such as bacteria colonies, tumors, and plant populations. The subsequent chapter examines data transformation tools using examples from ecology and air quality data, followed by a chapter on space-time covariance functions. The contributors then describe stochastic and statistical models that are used to generate simulated rainfall sequences for hydrological use, such as flood risk assessment. The final chapter explores Gaussian Markov random field specifications and Bayesian computational inference via Gibbs sampling and Markov chain Monte Carlo, illustrating the methods with a variety of data examples, such as temperature surfaces, dioxin concentrations, ozone concentrations, and a well-established deterministic dynamical weather model.
L'auteur - Barbel Finkenstadt
Bärbel Finkenstadt University of Warwick, Coventry, UK
L'auteur - Leonhard Held
Leonhard Held:University of Munich, Munich, Germany
L'auteur - Valerie Isham
Valerie Isham University College, London, UK
Sommaire
- Spatio-Temporal Point Processes: Methods and Applications
- Spatio-Temporal Modeling-With a View to Biological Growth
- Using Transforms to Analyze Space-Time Processes
- Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry
- Space-Time Modeling of Rainfall for Continuous Simulation
- A Primer on Space-Time Modeling from a Bayesian Perspective
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Chapman and Hall / CRC |
Auteur(s) | Barbel Finkenstadt, Leonhard Held, Valerie Isham |
Collection | Monographs on Statistics and Applied Probability |
Parution | 30/10/2006 |
Nb. de pages | 300 |
Format | 16,5 x 24,5 |
Couverture | Relié |
Poids | 570g |
Intérieur | Noir et Blanc |
EAN13 | 9781584885931 |
ISBN13 | 978-1-58488-593-1 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse