Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Statistics on Special Manifolds
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Statistics on Special Manifolds

Statistics on Special Manifolds

Yasuko Chikuse

426 pages, parution le 24/03/2003

Résumé

This book is concerned with statistical analysis on the two special manifolds, the Stiefel manifold and the Grassmann manifold, treated as statistical sample spaces consisting of matrices.

The former is represented by the set of m x k matrices whose columns are mutually orthogonal k-variate vectors of unit length, and the latter by the set of m x m orthogonal projection matrices idempotent of rank k. The observations for the special case k=3D1 are regarded as directed vectors on a unit hypersphere and as axes or lines undirected, respectively. Statistical analysis on these manifolds is required, especially for low dimensions in practical applications, in the earth (or geological) sciences, astronomy, medicine, biology, meteorology, animal behavior and many other fields. The Grassmann manifold is a rather new subject treated as a statistical sample space, and the development of statistical analysis on the manifold must make some contributions to the related sciences. The reader may already know the usual theory of multivariate analysis on the real Euclidean space and intend to deeper or broaden the research area to statistics on special manifolds, which is not treated in general textbooks of multivariate analysis.

The author rather concentrates on the topics to which a considerable amount of personal effort has been devoted. Starting with fundamental material of the special manifolds and some knowledge in multivariate analysis, the book discusses population distributions (especially the matrix Langevin distributions that are used for the most of the statistical analyses in this book), decompositions of the special manifolds, sampling distributions, and statistical inference on the parameters (estimation and tests for hypotheses).

Asymptotic theory in sampling distributions and statistical inference is developed for large sample size, for large concentration and for high dimension.

Contents

  1. The Special Manifolds and Related Multivariate Topics
  2. Distributions on the Special Manifolds
  3. Decompositions of the Special Manifolds
  4. Distributional Problems in the Decomposition Theorems and the Sampling Theory
  5. The Inference on the Parameters of the Matrix Langevin Distributions
  6. Large Sample Asymptotic Theorems in Connection with Tests for Uniformity
  7. Asymptotic Theorems for Concentrated Matrix Langevin Distributions
  8. High Dimensional Asymptotic Theorems
  9. Procrustes Analysis on the Special Manifolds
  10. Density Estimation on the Special Manifolds
  11. Measures of Orthogonal Association on the Special Manifolds

L'auteur - Yasuko Chikuse

University of Kagawa, Japan

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Yasuko Chikuse
Parution 24/03/2003
Nb. de pages 426
Format 15,5 x 23,5
Couverture Broché
Poids 602g
Intérieur Noir et Blanc
EAN13 9780387001609
ISBN13 978-0-387-00160-9

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription