Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Markov random field modeling
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Markov random field modeling

Markov random field modeling

Stan Li

324 pages, parution le 01/04/2001

Résumé

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. The book covers the following parts essential to the subject: introduction to fundamental theories, formulations of MRF vision models, MRF parameter estimation, and optimization algorithms. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This second edition includes the most important progress in Markov modeling in image analysis in recent years such as Markov modeling of images with "macro" patterns (e.g. the FRAME model), Markov chain Monte Carlo (MCMC) methods, reversible jump MCMC. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.

Contents: Foreword by Anil K. Jain.- Chapter 1. Introduction: 1.1 Visual Labeling. 1.2 Markov Random Fields and Gibbs Distributions. 1.3 Useful MRF Models. 1.4 Optimization-Based Vision. 1.5 Bayes Labeling of MRFs.- Chapter 2. Low Level MRF Models: 2.1 Observation Models. 2.2 Image Restoration and Reconstruction. 2.2 Edge Detection. 2.3 Texture Synthesis and Analysis. 2.4 Optical Flow.- Chapter 3. Discontinuities in MRFs: 3.1 Smoothness, Regularization and Discontinuities. 3.2 The Discontinuity Adaptive MRF Model. 3.3 Computation of DA Solutions. 3.4 Conclusion.- Chapter 4. Discontinuity-Adaptivity Model and Robust Estimation: 4.1 The DA Prior and Robust Statistics. 4.2 Experimental Comparison.- Chapter 5. High Level MRF Models: 5.1 Matching under Relational Constraints. 5.2 MRF-Based Matching. 5.3 Pose Computation.- Chapter 6. MRF Parameter Estimation: 6.1 Supervised Estimation with Labeled Data. 6.2 Unsupervised Estimation with Unlabeled Data. 6.3 Further Issues.- Chapter 7. Parameter Estimation in Optimal Object Recognition: 7.1 Motivation. 7.2 Theory of Parameter Estimation for Recognition. 7.3 Application in MRF Object Recognition. 7.4 Experiments. 7.5 Conclusion.- Chapter 8. Minimization -- Local Methods: 8.1 Classical Minimization with Continuous Labels. 8.2 Minimization with Discrete Labels. 8.3 Constrained Minimization. Chapter 9. Minimization -- Global Methods: 9.1 Simulated Annealing. 9.2 Mean Field Annealing. 9.3 Graduated Non-Convexity. 9.4 Genetic Algorithms. 9.5 Experimental Comparison. 9.6 Accelerating Computation. 9.7 Model Debugging.- References.- List of Notation.- Index

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Stan Li
Parution 01/04/2001
Nb. de pages 324
Format 15,5 x 23,5
Couverture Broché
Poids 553g
Intérieur Noir et Blanc
EAN13 9784431703099

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription