
Uncertainty and Information
Foundations of Generalized Information Theory
Résumé
Deal with information and uncertainty properly and efficiently using tools emerging from generalized information theory
Uncertainty and Information: Foundations of Generalized Information Theory contains comprehensive and up-to-date coverage of results that have emerged from a research program begun by the author in the early 1990s under the name "generalized information theory" (GIT). This ongoing research program aims to develop a formal mathematical treatment of the interrelated concepts of uncertainty and information in all their varieties. In GIT, as in classical information theory, uncertainty (predictive, retrodictive, diagnostic, prescriptive, and the like) is viewed as a manifestation of information deficiency, while information is viewed as anything capable of reducing the uncertainty. A broad conceptual framework for GIT is obtained by expanding the formalized language of classical set theory to include more expressive formalized languages based on fuzzy sets of various types, and by expanding classical theory of additive measures to include more expressive non-additive measures of various types.
This landmark book examines each of several theories for dealing with particular types of uncertainty at the following four levels:
- Mathematical formalization of the conceived type of uncertainty
- Calculus for manipulating this particular type of uncertainty
- Justifiable ways of measuring the amount of uncertainty in any situation formalizable in the theory
- Methodological aspects of the theory
With extensive use of examples and illustrations to clarify complex material and demonstrate practical applications, generous historical and bibliographical notes, end-of-chapter exercises to test readers' newfound knowledge, glossaries, and an Instructor's Manual, this is an excellent graduate-level textbook, as well as an outstanding reference for researchers and practitioners who deal with the various problems involving uncertainty and information.
Sommaire
- Introduction
- Classical Possibility-Based Uncertainty Theory
- Classical Probability-Based Uncertainty Theory
- Generalized Measures and Imprecise Probabilities
- Special Theories of Imprecise Probabilities
- Measures of Uncertainty and Information
- Fuzzy Set Theory
- Fuzzification of Uncertainty Theories
- Methodological Issues
- Conclusions
- Appendix A: Uniqueness of the U-Uncertainty
- Appendix B: Uniqueness of Generalized Hartley in DST
- Appendix C: Correctness of Algorithm 6.1.
- Appendix D: Proper Range of Generalized Shannon Entropy
- Appendix E: Maximum of GSa in Sec. 6.10
- Appendix F: Glossary of Key Concepts
- Appendix G: Glossary of Symbols
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Wiley |
Auteur(s) | George J. Klir |
Parution | 22/12/2005 |
Nb. de pages | 500 |
Format | 16 x 24,5 |
Couverture | Relié |
Poids | 820g |
Intérieur | Noir et Blanc |
EAN13 | 9780471748670 |
ISBN13 | 978-0-471-74867-0 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée Intelligence artificielle
- Sciences Mathématiques Mathématiques appliquées
- Sciences Techniques Robotique
- Sciences Techniques Intelligence artificielle I.A. appliquée
- Sciences Techniques Intelligence artificielle Systèmes experts
- Sciences Techniques Intelligence artificielle Réseaux de neurones
- Sciences Techniques Automatique