
Linear Optimization Problems with Inexact Data
M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, K. Zimmermann
Résumé
Linear programming attracted the interest of mathematicians during and after World War II when the first computers were constructed and methods for solving large linear programming problems were sought in connection with specific practical problems-for example, providing logistical support for the U.S. Armed Forces or modeling national economies. Early attempts to apply linear programming methods to solve practical problems failed to satisfy expectations. There were various reasons for the failure. One of them, which is the central topic of this book, was the inexactness of the data used to create the models. This phenomenon, inherent in most pratical problems, has been dealt with in several ways. At first, linear programming models used "average" values of inherently vague coefficients, but the optimal solutions of these models were not always optimal for the original problem itself. Later researchers developed the stochastic linear programming approach, but this too has its limitations. Recently, interest has been given to linear programming problems with data given as intervals, convex sets and/or fuzzy sets. The individual results of these studies have been promising, but the literature has not presented a unified theory. Linear Optimization Problems with Inexact Data attempts to present a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.
Written for:
Postgraduate or graduate students in the areas of operations research, optimization theory, linear algebra, interval analysis, reliable computing, and fuzzy sets; the book will also be useful for researchers in these respective areas
Sommaire
- Matrices (M. Fiedler)
- Solvability of systems of interval linear equations and inequalities (J. Rohn)
- Interval linear programming (J. Rohn)
- Linear programming with set coeffcients (J. Nedoma and J. Ramik)
- Fuzzy linear optimization (J. Ramik)
- Interval linear systems and optimization problems over max-algebras(K. Zimmermann)
- References
- List of Symbols
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, K. Zimmermann |
Parution | 01/06/2006 |
Nb. de pages | 230 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 530g |
Intérieur | Noir et Blanc |
EAN13 | 9780387326979 |
ISBN13 | 978-0-387-32697-9 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée Optimisation
- Informatique Développement d'applications Algorithmique et informatique appliquée Graphes
- Informatique Développement d'applications Algorithmique et informatique appliquée Recherche opérationnelle
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre linéaire
- Sciences Mathématiques Mathématiques par matières Recherche opérationnelle
- Sciences Mathématiques Mathématiques par matières Optimisation
- Sciences Mathématiques Mathématiques appliquées Statistiques