Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Conjecture and Proof
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Conjecture and Proof

Conjecture and Proof

Classroom Ressource Materials

Miklos Laczkovitch

118 pages, parution le 29/10/2002

Résumé

This book is a compilation of the lecture notes for a course designed and initiated by Paul Erdös, László Lovász, Vera Sós, and László Babai for a one-semester course given by the Budapest Seminars in Mathematics.
By introducing a variety of advanced topics, the book functions, in part, as a survey of topics from number theory, geometry, measure theory, and set theory. It can be used as a supplement in courses that introduce abstract mathematics to undergraduates. The ideas that are presented are deeper and more sophisticated than those typically encountered in sophomore-level "transition" courses. However, talented students in such courses should find this book to be an exciting excursion into new areas of mathematics--and more importantly, new ways of thinking about mathematical problems. Because of its unusual depth and the fact that some of the sections can stand alone or be combined with a few others to form a unit, this book is ideally suited for upper-level undergraduate seminars or capstone courses.
Although the text discusses questions from various fields including number theory, algebra and geometry, it is centered around the real number system and the problem of measure. Thus, the number theoretic sections are concerned with rational and irrational and with algebraic and transcendental numbers; the problems of geometric constructions clarify the nature of constructible numbers (as a subset of algebraic numbers), and the questions of geometric dissections serve as motivation for general problems of equidecomposability.

Contents

I. Proofs of impossibility, proofs of non-existence:

  • Proofs of irrationality
  • The elements of the theory of geometric constructions
  • Constructible regular polygons
  • Some basic facts on linear spaces and fields
  • Algebraic and transcendental numbers
  • Cauchy's functional equation
  • Geometric decompositions.

II: Constructions, proofs of existence:

  • The pigeonhole principle
  • Liouville numbers
  • Countable and uncountable sets
  • Isometries of Rn
  • The problem of invariant measures
  • The Banach-Tarski paradox
  • Open and closed sets in R. The Cantor set
  • The Peano curve
  • Borel sets
  • The diagonal method.

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Miklos Laczkovitch
Parution 29/10/2002
Nb. de pages 118
Format 15 x 23
Couverture Broché
Poids 180g
Intérieur Noir et Blanc
EAN13 9780883857229
ISBN13 978-0-88385-722-9

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription