
Conjecture and Proof
Classroom Ressource Materials
Résumé
This book is a compilation of the lecture notes for a
course designed and initiated by Paul Erdös, László Lovász,
Vera Sós, and László Babai for a one-semester course given
by the Budapest Seminars in Mathematics.
By introducing a variety of advanced topics, the book
functions, in part, as a survey of topics from number
theory, geometry, measure theory, and set theory. It can be
used as a supplement in courses that introduce abstract
mathematics to undergraduates. The ideas that are presented
are deeper and more sophisticated than those typically
encountered in sophomore-level "transition" courses.
However, talented students in such courses should find this
book to be an exciting excursion into new areas of
mathematics--and more importantly, new ways of thinking
about mathematical problems. Because of its unusual depth
and the fact that some of the sections can stand alone or
be combined with a few others to form a unit, this book is
ideally suited for upper-level undergraduate seminars or
capstone courses.
Although the text discusses questions from various fields
including number theory, algebra and geometry, it is
centered around the real number system and the problem of
measure. Thus, the number theoretic sections are concerned
with rational and irrational and with algebraic and
transcendental numbers; the problems of geometric
constructions clarify the nature of constructible numbers
(as a subset of algebraic numbers), and the questions of
geometric dissections serve as motivation for general
problems of equidecomposability.
Contents
I. Proofs of impossibility, proofs of non-existence:
- Proofs of irrationality
- The elements of the theory of geometric constructions
- Constructible regular polygons
- Some basic facts on linear spaces and fields
- Algebraic and transcendental numbers
- Cauchy's functional equation
- Geometric decompositions.
II: Constructions, proofs of existence:
- The pigeonhole principle
- Liouville numbers
- Countable and uncountable sets
- Isometries of Rn
- The problem of invariant measures
- The Banach-Tarski paradox
- Open and closed sets in R. The Cantor set
- The Peano curve
- Borel sets
- The diagonal method.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Cambridge University Press |
Auteur(s) | Miklos Laczkovitch |
Parution | 29/10/2002 |
Nb. de pages | 118 |
Format | 15 x 23 |
Couverture | Broché |
Poids | 180g |
Intérieur | Noir et Blanc |
EAN13 | 9780883857229 |
ISBN13 | 978-0-88385-722-9 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre linéaire
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des nombres
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Logique
- Sciences Mathématiques Mathématiques par matières Logique Algèbre de Boole
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques