
Dynamics in Infinite Dimensions
Jack K. Hale, Luis T. Magalhaes, Waldyr Muniz Oliva
Résumé
This book presents an introduction to the geometric
theory of infinite dimensional dynamical systems. Many of
the fundamental results are presented for symptotically
smooth dynamical systems that have applications to
functional differential equations as well as classes of
dissipative partial differential equations.
However, as in the earlier edition, the major emphasis is
on retarded functional differential equations. This updated
version also contains much material on neutral functional
differential equations. The results in the earlier edition
on Morse-Smale systems for maps are extended to a class of
semiflows which include retarded functional differential
equations and parabolic partial differential equations.
Persistence of hyperbolicity under perturbations and
nonuniform hyperbolicity also are discussed. There is a
presentation of an interesting Morse decomposition of delay
equations with negative feedback as well as a new chapter
on a class on monotone dynamical systems for which
transversality of stable and unstable manifolds always
holds. Functional differential equations on a fixed finite
dimensional space impose restrictions on the flow and may
not include all ordinary differential equations. A complete
discussion of these restrictions is given with a
classification of those finite dimensional vector fields
that can be realized on center manifolds. Included also is
a complete theory of normal forms for retarded and neutral
functional differential equations.
In addition to being useful for researchers in the field,
the book is appropriate for a graduate course in dynamical
systems.
- Introduction
- Invariant Sets and Attractors
- Functional Differential Equations on Manifolds
- The Dimension of the Attractor
- Stability and Bifurcation
- Stability of Morse-Smale Maps and Semiflows
- One-to-oneness, Persistence and Hyperbolicity
- Realization of Vector Fields and Normal Forms
- Attractor Sets as C1-Manifolds
- Monotonicity
- The Kupka-Smale Theorem
- Appendix A: Conley Index Theory in Noncompact Spaces
- References
- Index.
L'auteur - Jack K. Hale
Hale, J.K., Atlanta, GA, USA
L'auteur - Luis T. Magalhaes
Instituto Superior Tecnico, Lisbon, Portugal
L'auteur - Waldyr Muniz Oliva
Instituto Superior Tecnico, Lisbon, Portugal
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Jack K. Hale, Luis T. Magalhaes, Waldyr Muniz Oliva |
Parution | 28/08/2002 |
Édition | 2eme édition |
Nb. de pages | 280 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 558g |
Intérieur | Noir et Blanc |
EAN13 | 9780387954639 |
ISBN13 | 978-0-387-95463-9 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse fonctionnelle
- Sciences Mathématiques Mathématiques par matières Analyse Cours
- Sciences Mathématiques Mathématiques par matières Analyse Exercices
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour la physique
- Sciences Physique Physique fondamentale Systèmes dynamiques
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Physique