
Elliptic Curves
Dale Husemöller - Collection Graduate Texts in Mathematics
Résumé
This book is an introduction to the theory of elliptic curves, ranging from its most elementary aspects to current research. The first part, which grew out of Tate's Haverford lectures, covers the elementary arithmetic theory of elliptic curves over the rationals. The next two chapters recast the arguments used in the proof of the Mordell theorem into the context of Galois cohomology and descent theory. This is followed by three chapters on the analytic theory of elliptic curves, including such topics as elliptic functions, theta functions, and modular functions. Next, the theory of endomorphisms and elliptic curves over infinite and local fields are discussed. The book then continues by providing a survey of results in the arithmetic theory, especially those related to the conjecture of the Birch and Swinnerton-Dyer. This new edition contains three new chapters which explore recent directions and extensions of the theory of elliptic curves and the addition of two new appendices. The first appendix, written by Stefan Theisan, examines the role of Calabi-Yau manifolds in string theory, while the second, by Otto Forster, discusses the use of elliptic curves in computing theory and coding theory.
Dale Husemöller is a member of the faculty at the Max Planck Institute of Mathematics in Bonn.
Written for:
Graduate mathematics students, mathematicians
Sommaire
- Introduction to Rational Points on Plane Curves
- Elementary Properties of the Chord-Tangent Group Law on a Cubic Curve
- Plane Algebraic Curves
- Factorial Rings and Elimination Theory
- Elliptic Curves and Their Isomorphism
- Families of Elliptic Curves and Geometric Properties of Torsion Points
- Reduction mod p and Torsion Points
- Proof of Mordell's Finite Generation Theorem
- Galois Cohomology and Isomorphism Classification of Elliptic Curves over Arbitrary Fields
- Descent and Galois Cohomology
- Elliptic and Hypergeometric Functions
- Theta Functions
- Modular Functions
- Endomorphisms of Elliptic Curves
- Elliptic Curves over Finite Fields
- Elliptic Curves over Local Fields
- Elliptic Curves over Global Fields and l-adic Representations
- L-Functions of an Elliptic Curve and Its Analytic Continuation
- Remarks on the Birch and Swinnerton-Dyer Conjecture
- Remarks on the Modular Curves Conjecture and Fermat's Last Theorem
- Higher Dimensional Analogs of Elliptic Curves: Calabi-Yau Varieties
- Families of Elliptic Curves
- Appendix I: Calabi-Yau Manifolds and String Theory
- Appendix II: Elliptic Curves in Algorithmic Number Theory
- Appendix III: Guide to the Exercises
- Bibliography
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Dale Husemöller |
Collection | Graduate Texts in Mathematics |
Parution | 04/02/2004 |
Édition | 2eme édition |
Nb. de pages | 490 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 825g |
Intérieur | Noir et Blanc |
EAN13 | 9780387954905 |
ISBN13 | 978-0-387-95490-5 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre linéaire
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des nombres
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie de Galois
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Mathématiques Mathématiques par matières Topologie