
Geometric Methods in Algebra and Number Theory
Fedor Bogomolov, Yuri Tschinkel - Collection Progress in Mathematics
Résumé
The transparency and power of geometric constructions has been a source of inspiration to generations of mathematicians. The beauty and persuasion of pictures, communicated in words or drawings, continues to provide the intuition and arguments for working with complicated concepts and structures of modern mathematics. This volume contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory.
Key topics include:
- Curves and their Jacobians
- Algebraic surfaces
- Moduli spaces, Shimura varieties
- Motives and motivic integration
- Number-theoretic applications, rational points
- Combinatorial aspects of algebraic geometry
- Quantum cohomology
- Arithmetic dynamical systems
The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry; the text can serve as an intense introduction for graduate students and those wishing to pursue research in these areas.
Contributors: I. Bauer, F. Bogomolov, N. Budur, F. Catanese, C.-L. Chai, R. Cluckers, C. De Concini, J.S. Ellenberg, F. Grunewald, B. Hassett, T. Hausel, F. Loeser, J. Pineiro, R. Pink, C. Procesi, M. Spitzweck, P. Swinnerton-Dyer, L. Szpiro, H. Tamvakis, Y. Tschinkel, T.J. Tucker, A. Venkatesh, and Y.G. Zarhin.
Sommaire
- Preface
- Beauville surfaces without real structures
- Couniformization of curves over number fields
- On the V-filtration of D-modules
- Hecke orbits on Siegel modular varieties
- Ax-Kochen-Ersov Theorems for p-adic integrals and motivic integration
- Nested sets and Jeffrey-Kirwan residues
- Counting extensions of function fields with bounded discriminant and specified Galois group
- Classical and minimal models of the moduli space of curves of genus two
- Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve
- Mahler measure for dynamical systems on P1 and intersection theory on a singular arithmetic surface
- A Combination of the Conjecture of Mordell-Lang and André-Oort
- Motivic approach to limit sheaves
- Counting points on cubic surfaces, II
- Quantum cohomology of isotropic Grassmannians
- Endomorphism algebras of superelliptic Jacobians
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Birkhäuser |
Auteur(s) | Fedor Bogomolov, Yuri Tschinkel |
Collection | Progress in Mathematics |
Parution | 22/03/2005 |
Nb. de pages | 362 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 681g |
Intérieur | Noir et Blanc |
EAN13 | 9780817643492 |
ISBN13 | 978-0-8176-4349-2 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre linéaire
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des nombres
- Sciences Mathématiques Mathématiques par matières Géométrie
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques