
Model Reduction Methods for Vector Autoregressive Processes
Ralf Brüggemann - Collection Lecture Notes in Economics and Mathematical Systems
Résumé
Vector Autoregressive (VAR) models have become one of the dominant tools for the empirical analysis of macroeconomic time series. Sometimes the flexibility of VAR models leads to overparameterized models, making accurate estimates of impulse responses and forecasts difficult. This book introduces a variety of data-based model reduction methods and provides a detailed investigation of different reduction strategies in the context of popular VAR modelling classes, including stationary, cointegrated and structural VAR models. VAR practitioners benefit from guidelines being developed for using model reduction in applied work. The use of different reduction techniques is illustrated by means of empirical models for US monetary policy shocks and a structural vector error correction model of the German labor market.
Written for:
Scientists, practitioners
Sommaire
- Introduction
- Model Reduction in VAR Models
- Model Reduction in Cointegrated VAR Models
- Model Reduction and Structural Analysis
- Empirical Applications
- Concluding Remarks and Outlook
- Index of Notation
- Bibliography.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Ralf Brüggemann |
Collection | Lecture Notes in Economics and Mathematical Systems |
Parution | 11/02/2004 |
Nb. de pages | 220 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 370g |
Intérieur | Noir et Blanc |
EAN13 | 9783540206439 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse