Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation

Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation

AM-154

Spyridon Kamvissis, Kenneth D. T-R McLaughlin, Peter D. Miller

266 pages, parution le 01/10/2003

Résumé

This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe.

To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis.

Contents

  • Introduction and overview
  • Holomorphic Riemanna-Hilbert problemes for solitons
  • Semeiclassical soliton ensembles
  • Asymptotic analysis of the inverse problem
  • Direct construction of the complex phase
  • The Genus-Zero ansatz
  • The transition to Genus two
  • Variational theory of the complex phase
  • Conclusion and outlook
  • Appendixes

Caractéristiques techniques

  PAPIER
Éditeur(s) Princeton University Press
Auteur(s) Spyridon Kamvissis, Kenneth D. T-R McLaughlin, Peter D. Miller
Parution 01/10/2003
Nb. de pages 266
Format 15,5 x 23
Couverture Broché
Poids 420g
Intérieur Noir et Blanc
EAN13 9780691114828
ISBN13 978-0-691-11482-8

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription