
Smoothing and Decay Estimates for Nonlinear Diffusion Equations
Equations of Porous Medium Type
Juan Luis Vazquez - Collection Oxford Lecture Series in Mathematics and Its Applications
Résumé
This text is concerned with the quantitative aspects of the theory of nonlinear diffusion equations; equations which can be seen as nonlinear variations of the classical heat equation. They appear as mathematical models in different branches of Physics, Chemistry, Biology, and Engineering, and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on estimates and functional analysis.
Concentrating on a class of equations with nonlinearities of power type that lead to degenerate or singular parabolicity ("equations of porous medium type"), the aim of this text is to obtain sharp a priori estimates and decay rates for general classes of solutions in terms of estimates of particular problems. These estimates are the building blocks in understanding the qualitative theory, and the decay rates pave the way to the fine study of asymptotics. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including time decay, smoothing, extinction in finite time, and delayed regularity.
Readership: Graduates and researchers in mathematics, the physical sciences and engineering
L'auteur - Juan Luis Vazquez
Juan Luis Vazquez, Universidad Autónoma de Madrid
Sommaire
- Part I
- Preliminaries
- Smoothing effect and time decay. Data in L1(Rn) or M(Rn)
- Smoothing effect and time decay from Lp or Mp
- Lower bounds, contractivity, error estimates and continuity
- Part II
- Subcritical range of the FDE. Critical line. Extinction. Backward effect
- Improved analysis of the critical line. Delayed regularity
- Extinction rates and asymptotics for 0<M<MC
- Logarithmic diffusion in 2-d and intermediate 1-d range
- Super-fast FDE
- Summary of main results for the PME/FDE
- Part III
- Evolution equations of the p-Laplacian type
- Appendices
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Oxford University Press |
Auteur(s) | Juan Luis Vazquez |
Collection | Oxford Lecture Series in Mathematics and Its Applications |
Parution | 15/08/2006 |
Nb. de pages | 248 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 500g |
Intérieur | Noir et Blanc |
EAN13 | 9780199202973 |
ISBN13 | 978-0-19-920297-3 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse