Résumé
At first glance the prime numbers appear to be
distributed in a very irregular way amongst the integers,
but it is possible to produce a simple formula that tells
us (in an approximate but well defined sense) how many
primes we can expect to find that are less than any integer
we might choose. The prime number theorem tells us what
this formula is and it is indisputably one of the great
classical theorems of mathematics. This textbook gives an
introduction to the prime number theorem suitable for
advanced undergraduates and beginning graduate
students.
The author's aim is to show the reader how the tools of
analysis can be used in number theory to attack a
‘real' problem, and it is based on his own
experiences of teaching this material.
- 1. Foundations
- 2. Some important Dirichlet series and arithmetic functions
- 3. The basic theorems
- 4. Prime numbers in residue classes: Dirichlet's theorem
- 5. Error estimates and the Riemann hypothesis
- 6. An ‘elementary' proof of the prime number theorem
- Appendices
- Bibliography
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Cambridge University Press |
Auteur(s) | G. J. O. Jameson |
Parution | 04/04/2003 |
Nb. de pages | 262 |
Format | 15 x 22,5 |
Couverture | Broché |
Poids | 345g |
Intérieur | Noir et Blanc |
EAN13 | 9780521891103 |
ISBN13 | 978-0-521-89110-3 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse