
Introduction to Smooth Manifolds
Graduate Texts in Mathematics
Résumé
This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research - smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer. Along the way, the book introduces students to some of the most important examples of geometric structures that manifolds can carry, such as Riemannian metrics, symplectic structures, and foliations. The book is aimed at students who already have a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.
Contents- Preface
- Smooth Manifolds
- Smooth Maps
- Tangent Vectors
- Vector Fields
- Vector Bundles
- The Cotangent Bundle
- Submersions, Immersions, and Embeddings
- Submanifolds
- Embedding and Approximation Theorems
- Lie Group Actions
- Tensors
- Differential Forms
- Orientations
- Integration on Manifolds
- De Rham Cohomology
- The De Rham Theorem
- Integral Curves and Flows
- Lie Derivatives
- Integral Manifolds and Foliations
- Lie Groups and Their Lie Algebras
- Appendix: Review of Prerequisites
- References
- Index
L'auteur - John M. Lee
John M. Lee is Professor of Mathematics at the
University of Washington in Seattle, where he regularly
teaches graduate courses on the topology and geometry of
manifolds. He was the recipient of the American
Mathematical Societys Centennial Research Fellowship and he
is the author of two previous Springer books, Introduction
to Topological Manifolds (2000) and Riemannian Manifolds:
An Introduction to Curvature (1997).
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | John M. Lee |
Parution | 07/11/2002 |
Nb. de pages | 628 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 920g |
Intérieur | Noir et Blanc |
EAN13 | 9780387954486 |
ISBN13 | 978-0-387-95448-6 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie différentielle
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques