Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Introduction to Smooth Manifolds
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Introduction to Smooth Manifolds

Introduction to Smooth Manifolds

John M. Lee

628 pages, parution le 31/10/2002

Résumé

This book is an introductory graduate-level textbook on the theory of smooth manifolds, for students who already have a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis. It is a natural sequel to the author's last book, Introduction to Topological Manifolds(2000). While the subject is often called "differential geometry," in this book the author has decided to avoid use of this term because it applies more specifically to the study of smooth manifolds endowed with some extra structure, such as a Riemannian metric, a symplectic structure, a Lie group structure, or a foliation, and of the properties that are invariant under maps that preserve the structure.
Although this text addresses these subjects, they are treated more as interesting examples to which to apply the general theory than as objects of study in their own right. A student who finishes this book should be well prepared to go on to study any of these specialized subjects in much greater depth.

Contents
  • Preface Smooth Manifolds
  • Smooth Maps
  • Tangent Vectors
  • Vector Fields
  • Vector Bundles
  • The Cotangent Bundle
  • Submersions, Immersions, and Embeddings
  • Submanifolds
  • Embedding and Approximation Theorems
  • Lie Group Actions
  • Tensors
  • Differential Forms
  • Orientations
  • Integration on Manifolds
  • De Rham Cohomology
  • The De Rham Theorem
  • Integral Curves and Flows
  • Lie Derivatives
  • Integral Manifolds and Foliations
  • Lie Groups and Their Lie Algebras
  • Appendix: Review of Prerequisites
  • References
  • Index

L'auteur - John M. Lee

John M. Lee is Professor of Mathematics at the University of Washington in Seattle, where he regularly teaches graduate courses on the topology and geometry of manifolds. He was the recipient of the American Mathematical Societys Centennial Research Fellowship and he is the author of two previous Springer books, Introduction to Topological Manifolds (2000) and Riemannian Manifolds: An Introduction to Curvature (1997).

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) John M. Lee
Parution 31/10/2002
Nb. de pages 628
Format 16 x 24
Couverture Relié
Poids 1035g
Intérieur Noir et Blanc
EAN13 9780387954950
ISBN13 978-0-387-95495-0

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription