Résumé
This book is an introductory graduate-level textbook on
the theory of smooth manifolds, for students who already
have a solid acquaintance with general topology, the
fundamental group, and covering spaces, as well as basic
undergraduate linear algebra and real analysis. It is a
natural sequel to the author's last book, Introduction to
Topological Manifolds(2000). While the subject is often
called "differential geometry," in this book the author has
decided to avoid use of this term because it applies more
specifically to the study of smooth manifolds endowed with
some extra structure, such as a Riemannian metric, a
symplectic structure, a Lie group structure, or a
foliation, and of the properties that are invariant under
maps that preserve the structure.
Although this text addresses these subjects, they are
treated more as interesting examples to which to apply the
general theory than as objects of study in their own right.
A student who finishes this book should be well prepared to
go on to study any of these specialized subjects in much
greater depth.
- Preface Smooth Manifolds
- Smooth Maps
- Tangent Vectors
- Vector Fields
- Vector Bundles
- The Cotangent Bundle
- Submersions, Immersions, and Embeddings
- Submanifolds
- Embedding and Approximation Theorems
- Lie Group Actions
- Tensors
- Differential Forms
- Orientations
- Integration on Manifolds
- De Rham Cohomology
- The De Rham Theorem
- Integral Curves and Flows
- Lie Derivatives
- Integral Manifolds and Foliations
- Lie Groups and Their Lie Algebras
- Appendix: Review of Prerequisites
- References
- Index
L'auteur - John M. Lee
John M. Lee is Professor of Mathematics at the
University of Washington in Seattle, where he regularly
teaches graduate courses on the topology and geometry of
manifolds. He was the recipient of the American
Mathematical Societys Centennial Research Fellowship and he
is the author of two previous Springer books, Introduction
to Topological Manifolds (2000) and Riemannian Manifolds:
An Introduction to Curvature (1997).
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | John M. Lee |
Parution | 31/10/2002 |
Nb. de pages | 628 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 1035g |
Intérieur | Noir et Blanc |
EAN13 | 9780387954950 |
ISBN13 | 978-0-387-95495-0 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie différentielle
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques