Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Lie Groups
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Lie Groups

Lie Groups

Daniel Bump - Collection Graduate Texts in Mathematics

451 pages, parution le 04/10/2004

Résumé

This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts) and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties.

L'auteur - Daniel Bump

Daniel Bump is Professor of Mathematics at Stanford University. His research is in automorphic forms, representation theory and number theory. He is a co-author of GNU Go, a computer program that plays the game of Go. His previous books include Automorphic Forms and Representations (Cambridge University Press 1997) and Algebraic Geometry (World Scientific 1998).

Sommaire

  • Compact Groups: Haar Measure
    • Schur Orthogonality
    • Compact Operators
    • The Peter-Weyl Theorem
  • Lie Group Fundamentals: Lie Subgroups of GL(n, C)
    • Vector Fields
    • Left Invariant Vector Fields
    • The Exponential Map
    • Tensors and Universal Properties
    • The Universal Enveloping Algebra
    • Extension of Scalars
    • Representations of sl(2, C)
    • The Universal Cover
    • The Local Frobenius Theorem
    • Tori
    • Geodesics and Maximal Tori
    • Topological proof of Cartan's Theorem
    • The Weyl Integration Formula
    • The Root System Examples of Root Systems
    • Abstract Weyl Groups
    • The Fundamental Group
    • Semisimple Compact Groups
    • Highest Weight Vectors
    • The Weyl Character Formula
    • Spin
    • Complexification
    • Coxeter Groups
    • The Iwasawa Decomposition
    • The Bruhat Decomposition
    • Symmetric Spaces
    • Relative Root Systems.
    • Embeddings of Lie Groups
  • Topics
    • Mackey Theory
    • Characters of GL(n, C)
    • Duality between Sk and GL(n, C)
    • The Jacobi-Trudi Identity
    • Schur Polynomials and GL(n, C)
    • Schur Polynomials and Sk
    • Random Matrix Theory
    • Minors of Toeplitz Matrices
    • Branching Formulae and Tableaux
    • The Cauchy Identity
    • Unitary branching rules
    • The Involution Model for Sk
    • Some Symmetric Algebras
    • Gelfand Pairs
    • Hecke Algebras
    • Cohomology of Grassmannians
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Daniel Bump
Collection Graduate Texts in Mathematics
Parution 04/10/2004
Nb. de pages 451
Format 16 x 24
Couverture Relié
Poids 804g
Intérieur Noir et Blanc
EAN13 9780387211541
ISBN13 978-0-387-21154-1

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription