
Résumé
Honesty in voting, it turns out, is not always the best policy. Indeed, in the early 1970s, Allan Gibbard and Mark Satterthwaite, building on the seminal work of Nobel laureate Kenneth Arrow, proved that with three or more alternatives there is no reasonable voting system that is non-manipulable; voters will always have an opportunity to benefit by submitting a disingenuous ballot. The ensuing decades produced a number of theorems of striking mathematical naturality that dealt with the manipulability of voting systems. This book presents many of these results from the last quarter of the twentieth century, especially the contributions of economists and philosophers, from a mathematical point of view, with many new proofs. The presentation is almost completely self-contained, and requires no prerequisites except a willingness to follow rigorous mathematical arguments. Mathematics students, as well as mathematicians, political scientists, economists and philosophers will learn why it is impossible to devise a completely unmanipulable voting system.
- This is the only book that tries to bring together the main results from the last quarter of the twentieth century that deal with the manipulability of voting systems
- This is a unified treatment; a vast majority of the proofs are new
- This is a self-contained treatment; there are no prerequisites except a willingness to follow mathematical arguments
L'auteur - Alan D. Taylor
Alan D. Taylor : Union College, New York
Sommaire
- Introduction
- The Gibbard-Satterthwaite theorem
- Additional results for single-valued elections
- The Duggan-Schwartz theorem
- Additional results for multi-valued elections
- Ballots that rank sets
- Elections with outcomes that are lotteries
- Elections with variable agendas
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Cambridge University Press |
Auteur(s) | Alan D. Taylor |
Parution | 22/06/2005 |
Nb. de pages | 176 |
Format | 15 x 22,5 |
Couverture | Broché |
Poids | 270g |
Intérieur | Noir et Blanc |
EAN13 | 9780521008839 |
ISBN13 | 978-0-521-00883-9 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse