Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Calculus
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Calculus

Calculus

Saturnino L. Salas, Garrett J. Etgen, Einar Hille

1168 pages, parution le 11/12/2006 (10eme édition)

Résumé

For ten editions, readers have turned to Salas to learn the difficult concepts of calculus without sacrificing rigor. The book consistently provides clear calculus content to help them master these concepts and understand its relevance to the real world. Throughout the pages, it offers a perfect balance of theory and applications to elevate their mathematical insights. Readers will also find that the book emphasizes both problem-solving skills and real-world applications.

Sommaire

  • Precalculus Review.
    • What is Calculus?
    • Review of Elementary Mathematics.
    • Review of Inequalities.
    • Coordinate Plane; Analytic Geometry.
    • Functions.
    • The Elementary Functions.
    • Combinations of Functions.
    • A Note on Mathematical Proof; Mathematical Induction.
  • Limits and Continuity.
    • The Limit Process (An Intuitive Introduction).
    • Definition of Limit.
    • Some Limit Theorems.
    • Continuity.
    • The Pinching Theorem; Trigonometric Limits.
    • Two Basic Theorems.
  • The Derivative; The Process of Differentiation.
    • The Derivative.
    • Some Differentiation Formulas.
    • The d/dx Notation; Derivatives of Higher Order.
    • The Derivative as a Rate of Change.
    • The Chain Rule.
    • Differentiating the Trigonometric Functions.
    • Implicit Differentiation; Rational Powers.
  • The Mean-Value Theorem; Applications of the First and Second Derivatives.
    • The Mean-Value Theorem.
    • Increasing and Decreasing Functions.
    • Local Extreme Values.
    • Endpoint Extreme Values; Absolute Extreme Values.
    • Some Max-Min Problems.
    • Concavity and Points of Inflection.
    • Vertical and Horizontal Asymptotes; Vertical Tangents and Cusps.
    • Some Curve Sketching.
    • Velocity and Acceleration; Speed.
    • Related Rates of Change Per Unit Time.
    • Differentials.
    • Newton-Raphson Approximations.
  • Integration.
    • An Area Problem; A Speed-Distance Problem.
    • The Definite Integral of a Continuous Function.
    • The Function f(x) = Integral from a to x of f(t) dt.
    • The Fundamental Theorem of Integral Calculus.
    • Some Area Problems.
    • Indefinite Integrals.
    • Working Back from the Chain Rule; the u-Substitution.
    • Additional Properties of the Definite Integral.
    • Mean-Value Theorems for Integrals; Average Value of a Function.
  • Some Applications of the Integral.
    • More on Area.
    • Volume by Parallel Cross-Sections; Discs and Washers.
    • Volume by the Shell Method.
    • The Centroid of a Region; Pappus's Theorem on Volumes.
    • The Notion of Work.
    • Fluid Force.
  • The Transcendental Functions.
    • One-to-One Functions; Inverse Functions.
    • The Logarithm Function, Part I.
    • The Logarithm Function, Part II.
    • The Exponential Function.
    • Arbitrary Powers; Other Bases.
    • Exponential Growth and Decay.
    • The Inverse Trigonometric Functions.
    • The Hyperbolic Sine and Cosine.
    • The Other Hyperbolic Functions.
  • Techniques of Integration.
    • Integral Tables and Review.
    • Integration by Parts.
    • Powers and Products of Trigonometric Functions.
    • Integrals Featuring Square Root of (a^2 - x^2),Square Root of (a^2 + x^2), and Square Root of (x^2 - a^2).
    • Rational Functions; Partial Functions.
    • Some Rationalizing Substitutions.
    • Numerical Integration.
  • Differential Equations.
    • First-Order Linear Equations.
    • Integral Curves; Separable Equations.
    • The Equation y'' + ay'+ by = 0.
  • The Conic Sections; Polar Coordinates; Parametric Equations.
    • Geometry of Parabola, Ellipse, Hyperbola.
    • Polar Coordinates.
    • Graphing in Polar Coordinates.
    • Area in Polar Coordinates.
    • Curves Given Parametrically.
    • Tangents to Curves Given Parametrically.
    • Arc Length and Speed.
    • The Area of a Surface of Revolution; Pappus's Theorem on Surface Area.
  • Sequences; Indeterminate Forms; Improper Integrals.
    • The Least Upper Bound Axiom.
    • Sequences of Real Numbers.
    • The Limit of a Sequence.
    • Some Important Limits.
    • The Indeterminate Forms (0/0).
    • The Indeterminate Form (8/8); Other Indeterminate Forms.
    • Improper Integrals.
  • Infinite Series.
    • Sigma Notation.
    • Infinite Series.
    • The Integral Test; Basic Comparison, Limit Comparison.
    • The Root Test; The Ratio Test.
    • Absolute and Conditional Convergence; Alternating Series.
    • Taylor Polynomials in x; Taylor Series in x.
    • Taylor Polynomials and Taylor Series in x - a.
    • Power Series.
    • Differentiation and Integration of Power Series.
  • Vectors.
    • Rectangular Space Coordinates.
    • Vectors in Three-Dimensional Space.
    • The Dot Product.
    • The Cross Product.
    • Lines.
    • Planes.
    • Higher Dimensions.
  • Vector Calculus.
    • Limit, Continuity, Vector Derivative.
    • The Rules of Differentiation.
    • Curves.
    • Arc Length.
    • Curvilinear Motion; Curvature.
    • Vector Calculus in Mechanics.
    • Planetary Motion.
  • Functions of Several Variables.
    • Elementary Examples.
    • A Brief Catalogue of Quadric Surfaces; Projections.
    • Graphs; Level Curves and Level Surfaces.
    • Partial Derivatives.
    • Open Sets and Closed Sets.
    • Limits and Continuity; Equality of Mixed Partials.
  • Gradients; Extreme Values; Differentials.
    • Differentiability and Gradient.
    • Gradients and Directional Derivatives.
    • The Mean-Value Theorem; the Chain Rule.
    • The Gradient as a Normal; Tangent Lines and Tangent Planes.
    • Local Extreme Values.
    • Absolute Extreme Values.
    • Maxima and Minima with Side Conditions.
    • Differentials.
    • Reconstructing a Function from Its Gradient.
  • Multiple Integrals.
    • Multiple-Sigma Notation.
    • Double Integrals.
    • The Evaluation of Double Integrals by Repeated Integrals.
    • The Double Integral as the Limit or Riemann Sums; Polar Coordinates.
    • Further Applications of Double Integration.
    • Triple Integrals.
    • Reduction to Repeated Integrals.
    • Cylindrical Coordinates.
    • The Triple Integral as the Limit of Riemann Sums; Spherical Coordinates.
    • Jacobians; Changing Variables in Multiple Integration.
  • Line Integrals and Surface Integrals.
    • Line Integrals.
    • The Fundamental Theorem for Line Integrals.
    • Work-Energy Formula; Conservation of Mechanical Energy.
    • Another Notation for Line Integrals; Line Integrals with Respect to Arc Length.
    • Green's Theorem.
    • Parametrized Surfaces; Surface Area.
    • Surface Integrals.
    • The Vector Differential Operator Ñ.
    • The Divergence Theorem.
    • Stokes's Theorem.
  • Additional Differential Equations.
    • Bernoulli Equations; Homogeneous Equations.
    • Exact Differential Equations; Integrating Factors.
    • Numerical Methods.
    • The Equation y'' + ay'+ by = ø(x).
    • Mechanical Vibrations.
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) Saturnino L. Salas, Garrett J. Etgen, Einar Hille
Parution 11/12/2006
Édition  10eme édition
Nb. de pages 1168
Format 26,5 x 21
Couverture Relié
Poids 2177g
Intérieur Noir et Blanc
EAN13 9780471698043
ISBN13 978-0-471-69804-3

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription