
Visualizing Quaternions
Andrew J. Hanson - Collection Interactive 3D Technology
Résumé
Introduced 160 years ago as an attempt to generalize complex numbers to higher dimensions, quaternions are now recognized as one of the most important concepts in modern computer graphics. They offer a powerful way to represent rotations and compared to rotation matrices they use less memory, compose faster, and are naturally suited for efficient interpolation of rotations. Despite this, many practitioners have avoided quaternions because of the mathematics used to understand them, hoping that some day a more intuitive description will be available.
The wait is over. Andrew Hanson's new book is a fresh perspective on quaternions. The first part of the book focuses on visualizing quaternions to provide the intuition necessary to use them, and includes many illustrative examples to motivate why they are important-a beautiful introduction to those wanting to explore quaternions unencumbered by their mathematical aspects. The second part covers the all-important advanced applications, including quaternion curves, surfaces, and volumes. Finally, for those wanting the full story of the mathematics behind quaternions, there is a gentle introduction to their four-dimensional nature and to Clifford Algebras, the all-encompassing framework for vectors and quaternions.
Sommaire
- Elements of quaternions
- The discovery of quaternions
- Folklore of rotations
- Basic notation
- What are quaternions?
- Road map to quaternion visualization
- Fundamentals of rotations
- Visualizing algebraic structure
- Visualizing spheres
- Visualizing logarithms and exponentials
- Visualizing interpolation methods
- Looking at elementary quaternion frames
- Quaternions and the belt trick: connecting to the identity
- Quaternions and the rolling ball: exploiting order dependence
- Quaternions and gimbal lock: limiting the available space
- Advanced quaternion topics
- Alternative ways of writing quaternions
- Efficiency and complexity issues
- Advanced sphere visualization
- More on logarithms and exponentials
- Two-dimensional curves
- Three-dimensional curves
- 3d surfaces
- Optimal quaternion frames
- Quaternion volumes
- Quaternion maps of streamlines
- Quaternion interpolation
- Quaternion rotator dynamics
- Concepts of the rotation group
- Spherical riemannian geometry
- Beyond quaternions
- The relationship of 4d rotations to quaternions
- Quaternions and the four division algebras
- Clifford algebras
- Conclusions
- Appendices
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Morgan Kaufmann |
Auteur(s) | Andrew J. Hanson |
Collection | Interactive 3D Technology |
Parution | 15/02/2006 |
Nb. de pages | 500 |
Format | 20 x 24 |
Couverture | Relié |
Poids | 1240g |
Intérieur | Noir et Blanc |
EAN13 | 9780120884001 |
ISBN13 | 978-0-12-088400-1 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse