Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Pricing Derivative Securities
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Pricing Derivative Securities

Pricing Derivative Securities

An Interactive Dynamic Environment with Maple V and MATLAB

Prisman

760 pages, parution le 01/04/2000

Résumé

Pricing derivatives theory comes alive in this self-contained interactive experience in financial pricing. The no-arbitrage perspective in a one-period state-preference model drives the book, and the Maple and Matlab programs help readers visualize payoffs and respond to various constraints and conditions. With clear explanations and lavish illustrations, Pricing Derivative Securities teaches the core theoretical concepts so often disguised behind difficult terms and institutional details. Readers can experiment with the electronic packages forever, using the book and its solutions manual as a tutorial that can help solve problems of increasing complexity.
  • Enclosed CD-ROM provides an interactive, dynamic and friendly environment allowing students to learn through hands on experience
  • Enhances learning by altering the commands in the on-line files, varying them at will, in order to experiment with applications of the concepts and different (reader-generated) examples, in addition to the ones already in the prepared file
  • Provides both the framework and the tools, based on the no free lunch concept, by which readers can analyze and appreciate different scenarios, including those that are not covered in the book, related to derivative securities
  • Basic concepts of stochastic calculus are enriched with demonstrations using animation, simulation and three-dimensional graphs thereby overcoming mathematical complexity
  • The MATLAB Graphic User Interface provides the ability to bring to life on the screen the theoretical material of the chapters
Contents
  • Preface xv
  • Software xxii
  • 1 Theory of Arbitrage 1
  • 1.1 A Basic One-Period Model 1
  • 1.2 Defining the No-Arbitrage Condition 5
  • 1.2.1 Identifying an Arbitrage Portfolio 8
  • 1.2.2 Law of One Price 11
  • 1.3 Pricing by Replication 13
  • 1.3.1 Three Special Contingent Cash Flows 14
  • 1.4 Stochastic Discount Factors (SDFs) 18
  • 1.4.1 SDFs and Risk-Neutral Probability 22
  • 1.5 Concluding Remarks 28
  • 1.6 Questions and Problems 29
  • 1.7 Appendix 32
  • 1.7.1 Complete Market 32
  • 1.7.2 Incomplete Market 34
  • 1.7.3 Incomplete Market and Arbitrage Bounds 35
  • 1.7.4 The No-Arbitrage Condition and Its Geometric Exposition 42
  • 2 Arbitrage Pricing: Equity Markets 47
  • 2.1 Market Structure and the Risk-Free Rate 47
  • 2.2 One-Period Binomial Model 50
  • 2.3 Valuing Two Propositions 57
  • 2.4 Forwards: A First Look 61
  • 2.4.1 Forward Contract on a Security 62
  • 2.4.2 Forward Contract on the Exchange Rate 67
  • 2.5 Swaps: A First Look 72
  • 2.5.1 Currency Swaps 72
  • 2.5.2 Equity (Asset) Swap 74
  • 2.6 General Valuation 77
  • 2.6.1 The Risk-Free Rate of Interest Implicit in the Market 78
  • 2.6.2 The Two Propositions 78
  • 2.6.3 Forwards 79
  • 2.6.4 Swaps 83
  • 2.7 Concluding Remarks 86
  • 2.8 Questions and Problems 87
  • 3 Pricing by Arbitrage: Debt Markets 91
  • 3.1 Setting the Framework 91
  • 3.2 Arbitrage in the Debt Market 94
  • 3.2.1 Distinct Features of the Debt Market 99
  • 3.2.2 Defining the No-Arbitrage Condition 101
  • 3.3 Discount Factors 104
  • 3.4 Discount Factors and Continuous Compounding 108
  • 3.4.1 Continuous Compounding 108
  • 3.5 Concluding Remarks 110
  • 3.6 Questions and Problems 111
  • 3.7 Appendix 113
  • 3.7.1 No-Arbitrage Condition in the Bond Market 113
  • 4 Fundamentals of Options 115
  • 4.1 Extending the Simple Model 115
  • 4.2 Two Types of Options 116
  • 4.3 Trading Strategies 125
  • 4.3.1 Portfolios of Calls and Puts with the Same Maturity Date 127
  • 4.4 Payoff Diagrams and Relative Pricing 141
  • 4.4.1 Pricing Bounds Obtained by Relative Pricing Results 143
  • 4.4.2 Put-Call Parity 148
  • 4.5 From Payoffs to Portfolios 154
  • 4.6 Concluding Remarks 164
  • 4.7 Questions and Problems 165
  • 4.8 Appendix 168
  • 4.8.1 Explanation of Stripay 168
  • 4.8.2 Procedural Issues 169
  • 5 Risk-Neutral Probability and the SDF 183
  • 5.1 Infinite vs. Finite States of Nature 184
  • 5.2 SDF for an Infinite [Omega] 187
  • 5.3 Risk-Neutral Probability and the SDF 191
  • 5.4 A First Look at Stock Prices 193
  • 5.5 The Distribution of the Rate of Return 196
  • 5.6 Paths of the Price Process 204
  • 5.7 Specifying a Risk-Neutral Probability 208
  • 5.8 Lognormal Distributions and the SDF 213
  • 5.9 The Stochastic Discount Factor Function 215
  • 5.10 Concluding Remarks 220
  • 5.11 Questions and Problems 221
  • 6 Valuation of European Options 223
  • 6.1 Valuing a Call Option 224
  • 6.2 Valuing a Put Option 230
  • 6.3 Combinations across Time 234
  • 6.4 Dividends and Option Pricing 255
  • 6.5 Volatility and Implied Volatility 259
  • 6.5.1 Estimating Volatility from Historical Data 259
  • 6.5.2 Implied Volatility 261
  • 6.6 Concluding Remarks 265
  • 6.7 Questions and Problems 266
  • 6.8 Appendix 268
  • 6.8.1 Estimating Implied Volatility Using Trial and Error 268
  • 7 Sensitivity Measures 271
  • 7.1 The Theta Measure 272
  • 7.2 The Delta Measure 281
  • 7.3 The Gamma Measure 288
  • 7.4 The Vega Measure 293
  • 7.5 The Rho Measure 298
  • 7.6 Concluding Remarks 302
  • 7.7 Questions and Problems 304
  • 7.8 Appendix 307
  • 7.8.1 Derivation of Sensitivity Measures 307
  • 7.8.2 Sensitivities of Other Options 312
  • 7.8.3 Signs of the Sensitivities 317
  • 8 Hedging with the Greeks 323
  • 8.1 Hedging: The General Philosophy 323
  • 8.2 Delta Hedging 326
  • 8.2.1 Solving for a Delta Neutral Portfolio 326
  • 8.3 Delta Neutral Portfolios 341
  • 8.4 General Hedging 347
  • 8.5 Optimizing Hedged Portfolios 364
  • 8.6 Concluding Remarks 370
  • 8.7 Questions and Problems 371
  • 9 The Term Structure and Its Estimation 373
  • 9.1 The Term Structure of Interest Rates 374
  • 9.1.1 Zero-Coupon, Spot, and Yield Curves 377
  • 9.2 Smoothing of the Term Structure 383
  • 9.2.1 Smoothing and Continuous Compounding 389
  • 9.3 Forward Rate 393
  • 9.3.1 Forward Rate: A Classical Approach 393
  • 9.3.2 Forward Rate: A Practical Approach 396
  • 9.4 A Variable Rate Bond 399
  • 9.5 Concluding Remarks 402
  • 9.6 Questions and Problems 404
  • 9.7 Appendix 408
  • 9.7.1 Theories of the Shape of the Term Structure 408
  • 9.7.2 Approximating Functions 411
  • 10 Forwards, Eurodollars, and Futures 413
  • 10.1 Forward Contracts: A Second Look 414
  • 10.2 Valuation of Forward Contracts 415
  • 10.3 Forward Price of Assets 423
  • 10.3.1 Forward Contracts, Prior to Maturity, of Assets That Pay Known Cash Flows 427
  • 10.3.2 Forward Price of a Dividend-Paying Stock 430
  • 10.4 Eurodollar Contracts 432
  • 10.4.1 Forward Rate Agreements (FRAs) 432
  • 10.5 Futures Contracts: A Second Look 435
  • 10.6 Deterministic Term Structure (DTS) 439
  • 10.7 Futures Contracts in a DTS Environment 441
  • 10.8 Concluding Remarks 448
  • 10.9 Questions and Problems 449
  • 11 Swaps: A Second Look 453
  • 11.1 A Fixed-for-Float Swap 453
  • 11.1.1 Valuing an Existing Swap 458
  • 11.2 Currency Swaps 461
  • 11.3 Commodity and Equity Swaps 472
  • 11.3.1 Equity Swaps 475
  • 11.4 Forwards and Swaps: A Visualization 478
  • 11.5 Concluding Remarks 479
  • 11.6 Questions and Problems 481
  • 12 American Options 485
  • 12.1 American Call Option 486
  • 12.1.1 Arbitrage Bounds 486
  • 12.1.2 Early Exercise Decision 487
  • 12.2 American Put Options 488
  • 12.2.1 Arbitrage Bounds 488
  • 12.2.2 Early Exercise Decision 490
  • 12.3 Put--Call Parity 492
  • 12.4 The Effect of Dividends 495
  • 12.4.1 A Call Option 495
  • 12.4.2 A Put Option 501
  • 12.5 Concluding Remarks 502
  • 12.6 Questions and Problems 502
  • 13 Binomial Models I 505
  • 13.1 Setting the Premises 505
  • 13.2 No-Arbitrage and SDFs 511
  • 13.2.1 No-Arbitrage 511
  • 13.2.2 SDF 512
  • 13.3 Valuation 521
  • 13.3.1 Valuation with SDFs 521
  • 13.3.2 Valuation by Replication 522
  • 13.4 Numerical Valuation 529
  • 13.4.1 Price Evolution 529
  • 13.4.2 European Call 530
  • 13.4.3 European Put 539
  • 13.4.4 American Options 546
  • 13.5 Concluding Remarks 554
  • 13.6 Questions and Problems 555
  • 14 Binomial Models II 557
  • 14.1 Binomial Model and Black-Scholes Formula 558
  • 14.1.1 Binomial vs. Lognormal 558
  • 14.1.2 Numerical Implementations 562
  • 14.1.3 The Effect of Dividends 568
  • 14.2 Risk-Neutral Probabilities 571
  • 14.3 Futures and Forwards: A Symbolic Example 579
  • 14.4 Brownian Motion 585
  • 14.5 Concluding Remarks 590
  • 14.6 Questions and Problems 592
  • 14.7 Appendix 593
  • 14.7.1 The Black-Scholes Formula as a Limit of the Binomial Formula 593
  • 15 The Black-Scholes Formula 599
  • 15.1 An Overview 599
  • 15.2 The Price Process: A Second Look 602
  • 15.2.1 Stochastic Evolution: The Discrete Case 605
  • 15.3 Simulation of Stochastic Evolution 608
  • 15.4 Stochastic Evolution 615
  • 15.5 Ito's Lemma 621
  • 15.5.1 Heuristic Proofs of Ito's Lemma 623
  • 15.5.2 Examples Utilizing Ito's Lemma 628
  • 15.6 The Black-Scholes Differential Equation 632
  • 15.6.1 A Second Derivation 640
  • 15.7 Reconciliation with Risk-Neutral Valuation 642
  • 15.8 American vs. European 644
  • 15.9 Concluding Remarks 649
  • 15.10 Questions and Problems 651
  • 15.11 Appendix 652
  • 15.11.1 A Change over an Instant 652
  • 15.11.2 The Limit of a Random Variable 656
  • 15.11.3 A More Rigorous Insight into Ito's Lemma 666
  • 16 Other Types of Options 673
  • 16.1 Early Exercise, Dividends and Binomial Models 674
  • 16.2 Indexes, Foreign Currency, and Futures 677
  • 16.2.1 Stock Index Options 677
  • 16.2.2 Currency Options 679
  • 16.2.3 Options on Futures Contracts 682
  • 16.3 Examples of Exotic Options 688
  • 16.3.1 Binary (Digital) Options 689
  • 16.3.2 Combinations of Binary and Plain Vanilla Options 694
  • 16.3.3 Gap Options 695
  • 16.3.4 Paylater (Cash on Delivery) Options 700
  • 16.4 Interest Rate Derivatives 704
  • 16.4.1 Black's Model 705
  • 16.4.2 The Black, Derman, and Toy Model 714
  • 16.5 Concluding Remarks 729
  • 16.6 Questions and Problems 731
  • 17 The End or the Beginning? 735
  • Index 743

Caractéristiques techniques

  PAPIER
Éditeur(s) Academic Press
Auteur(s) Prisman
Parution 01/04/2000
Nb. de pages 760
Couverture Broché
Intérieur Noir et Blanc
EAN13 9780125649155
ISBN13 978-0-12-564915-5

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription