
18 Unconventional Essays on the Nature of Mathematics
Résumé
This book collects some of the most interesting recent writings that are tackling, from various points of view, the problem of giving an accounting of the nature, purpose, and justification of real mathematical practice--mathematics as actually done by real live mathematicians. What is the nature of the objects being studied? What determines the directions and styles in which mathematics progresses (or, perhaps, degenerates)? What certifies its claim to certainty, or to a priori status, to independence of experience? Why is mathematics the same for all times and places, or is it really the same, or in what senses is it the same and in what senses different? Many of these writings were read at conferences in Europe and America under the heading of "history" or "cultural studies" as well as "philosophy." It is the editor's hope to help foster healthy interdisciplinary mutual aid in this young and fertile area.
Written for: Everyone interested in philosophy of science, from professional mathematicians to general readers
L'auteur - Reuben Hersh
Reuben Hersh is professor emeritus at the University of New Mexico, Albuquerque. He is the recipient (with Martin Davis) of the Chauvenet Prize and (with Edgar Lorch) the Ford Prize. Hersh is the author (with Philip J. Davis) of The Mathematical Experience and Descartes' Dream, which won the National Book Award in l983, and What is Mathematics, Really?
Sommaire
- A Socratic Dialogue on Mathematics
- "Introduction" to Filosofia e matematica
- On Proof and Progress in Mathematics
- The Informal Logic of Mathematical Proof
- Philosophical Problems of Mathematics in the Light of Evolutionary Epistemology
- Towards a Semiotics of Mathematics
- Computers and the Sociology of Mathematical Proof
- From GHH and Littlewood to XML and Maple: Changing Needs and Expectations in Mathematical Knowledge Management
- Do Real Numbers Really Move? Language, Thought, and Gesture: The Embodied Cognitive Foundations of Mathematics
- Does Mathematics Need a Philosophy?
- How and Why Mathematics Is Unique as a Social Practice
- The Pernicious Influence of Mathematics upon Philosophy
- The Pernicious Influence of Mathematics on Science
- What Is Philosophy of Mathematics Looking for?
- Concepts and the Mangle of Practice Constructing Quaternions
- Mathematics as Objective Knowledge and as Human Practice
- The Locus of Mathematical Reality: An Anthropological Footnote
- Inner Vision, Outer Truth
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Reuben Hersh |
Parution | 04/11/2005 |
Nb. de pages | 330 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 505g |
Intérieur | Noir et Blanc |
EAN13 | 9780387257174 |
ISBN13 | 978-0-387-25717-4 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée
- Sciences Mathématiques Mathématiques par matières
- Sciences Mathématiques Mathématiques appliquées
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques
- Sciences Sciences et culture Histoire des sciences et personnalités scientifiques Histoire des mathématiques