Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem

A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem

Heuristics and Rigourous Verification on a Model

Amadeu Delshams, Rafael De La Llave, Tere M. Seara - Collection Memoirs of the American Mathematical Society

142 pages, parution le 29/06/2006

Résumé

We introduce a geometric mechanism for diffusion in a priori unstable nearly integrable dynamical systems. It is based on the observation that resonances, besides destroying the primary KAM tori, create secondary tori and tori of lower dimension. We argue that these objects created by resonances can be incorporated in transition chains taking the place of the destroyed primary KAM tori.

We establish rigorously the existence of this mechanism in a simple model that has been studied before. The main technique is to develop a toolkit to study, in a unified way, tori of different topologies and their invariant manifolds, their intersections as well as shadowing properties of these bi-asymptotic orbits. This toolkit is based on extending and unifying standard techniques. A new tool used here is the scattering map of normally hyperbolic invariant manifolds.

The model considered is a one-parameter family, which for $\varepsilon = 0$ is an integrable system. We give a small number of explicit conditions the jet of order $3$ of the family that, if verified imply diffusion. The conditions are just that some explicitely constructed functionals do not vanish identically or have non-degenerate critical points, etc.

An attractive feature of the mechanism is that the transition chains are shorter in the places where the heuristic intuition and numerical experimentation suggests that the diffusion is strongest.

Sommaire

  • Introduction
  • Heuristic discussion of the mechanism
  • A simple model
  • Statement of rigorous results
  • Notation and definitions, resonances
  • Geometric features of the unperturbed problem
  • Persistence of the normally hyperbolic invariant manifold and its stable and unstable manifolds
  • The dynamics in $tilde Lambda {varepsilon}$
  • The scattering map
  • Existence of transition chains
  • Orbits shadowing the transition chains and proof of Theorem 4.1
  • Conclusions and remarks
  • An example
  • Acknowledgments
  • Bibliography
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) American Mathematical Society (AMS)
Auteur(s) Amadeu Delshams, Rafael De La Llave, Tere M. Seara
Collection Memoirs of the American Mathematical Society
Parution 29/06/2006
Nb. de pages 142
Format 18 x 25
Couverture Broché
Poids 309g
Intérieur Noir et Blanc
EAN13 9780821838242
ISBN13 978-0-8218-3824-2

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients 0 321 79 56 75 sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925