
Analytical Methods for Markov Semigroups
Luca Lorenzi, Marcello Bertoldi - Collection Pure and Applied Mathematics
Résumé
For the first time in book form, Analytical Methods for Markov Semigroups provides a comprehensive analysis on Markov semigroups both in spaces of bounded and continuous functions as well as in Lp spaces relevant to the invariant measure of the semigroup. Exploring specific techniques and results, the book collects and updates the literature associated with Markov semigroups.
Divided into four parts, the book begins with the general properties of the semigroup in spaces of continuous functions: the existence of solutions to the elliptic and to the parabolic equation, uniqueness properties and counterexamples to uniqueness, and the definition and properties of the weak generator. It also examines properties of the Markov process and the connection with the uniqueness of the solutions. In the second part, the authors consider the replacement of RN with an open and unbounded domain of RN. They also discuss homogeneous Dirichlet and Neumann boundary conditions associated with the operator A. The final chapters analyze degenerate elliptic operators A and offer solutions to the problem.
Using analytical methods, this book presents past and present results of Markov semigroups, making it suitable for applications in science, engineering, and economics.
Sommaire
- Introduction
- The elliptic equation and the Cauchy problem in C[subscript b](R[superscript N]) : the uniformly elliptic case
- One-dimensional theory
- Uniqueness results, conservation of probability and maximum principles
- Properties of {T(t)} in spaces of continuous functions
- Uniform estimates for the derivatives of T(t)f
- Pointwise estimates for the derivatives of T(t)f
- Invariant measures [mu] and the semigroup in L[superscript p](R[superscript N],[mu])
- The Ornstein-Uhlenbeck operator
- A class of nonanalytic Markov semigroups in C[subscript b](R[superscript N]) and in L[superscript p](R[superscript M], [mu])
- The Cauchy-Dirichlet problem
- The Cauchy-Neumann problem : the convex case
- The Cauchy-Neumann problem : the nonconvex case
- The Cauchy problem in C[subscript b](R[superscript N])
- A Basic notions of functional analysis in Banach spaces
- B An overview on strongly continuous and analytic semigroups
- C PDE's and analytic semigroups
- D Some properties of the distance function
- E Function spaces : definitions and main properties
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Chapman and Hall / CRC |
Auteur(s) | Luca Lorenzi, Marcello Bertoldi |
Collection | Pure and Applied Mathematics |
Parution | 12/10/2006 |
Nb. de pages | 560 |
Format | 16 x 23,5 |
Couverture | Relié |
Poids | 875g |
Intérieur | Noir et Blanc |
EAN13 | 9781584886594 |
ISBN13 | 978-1-58488-659-4 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse