
Ideals and Reality
Projective Modules and Numbers of Generators of Ideals
Friedrich Ischebeck, Ravi Rao - Collection Springer Monographs in Mathematics
Résumé
This monograph tells the story of a philosophy of J-P. Serre and his vision of relating that philosophy to problems in affine algebraic geometry. It gives a lucid presentation of the Quillen-Suslin theorem settling Serre's conjecture. The central topic of the book is the question of whether a curve in n-space is a set-theoric intersection, depicted by the central theorems of Ferrand, Szpiro, Cowsik-Nori, Mohan Kumar, Boratýnski.
The book gives a comprehensive introduction to basic commutative algebra, together with the related methods from homological algebra, which will enable students who know only the fundamentals of algebra to enjoy the power of using these tools. At the same time, it also serves as a valuable reference for the research specialist and as potential course material, because the authors present, for the first time in book form, an approach here that is an intermix of classical algebraic K-theory and complete intersection techniques, making connections with the famous results of Forster-Swan and Eisenbud-Evans. A study of projective modules and their connections with topological vector bundles in a form due to Vaserstein is included. Important subsidiary results appear in the copious exercises.
Even this advanced material, presented comprehensively, keeps in mind the young student as potential reader besides the specialists of the subject.
Sommaire
- Basic Commutative Algebra 1
- Introduction to Projective Modules
- Stably Free Modules
- Serre's Conjecture
- Basic Commutative Algebra II
- Splitting Theorem and Lindel's Proof
- Regular Rings
- Number of Generators
- Curves as Complete Intersection
- Normality of En, in GLn
- Some Homological Algebra
- Complete intersections and Connectedness
- Odds and Ends
- Exercices
- References
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Friedrich Ischebeck, Ravi Rao |
Collection | Springer Monographs in Mathematics |
Parution | 13/12/2004 |
Nb. de pages | 336 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 640g |
Intérieur | Noir et Blanc |
EAN13 | 9783540230328 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie algébrique
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques