
Rational Points on Curves over Finite Fields
Theory and Applications
Harald Niederreiter, Chaoping Xing
Résumé
Recently, the authors discovered another important application of such curves, namely to the construction of low-discrepancy sequences. These sequences are needed for numerical methods in areas as diverse as computational physics and mathematical finance. This has given additional impetus to the theory of, and the search for, algebraic curves over finite fields with many rational points.
This book aims to sum up the theoretical work on algebraic curves over finite fields with many rational points and to discuss the applications of such curves to algebraic coding theory and the construction of low-discrepancy sequences.
Contents
- Preface
- 1.1 Riemann-Roch Theorem 1
- 1.2 Divisor Class Groups and Ideal Class Groups 6
- 1.3 Algebraic Extensions and the Hurwitz Formula 10
- 1.4 Ramification Theory of Galois Extensions 14
- 1.5 Constant Field Extensions 20
- 1.6 Zeta Functions and Rational Places 26
- 2.1 Local Fields 36
- 2.2 Newton Polygons 38
- 2.3 Ramification Groups and Conductors 39
- 2.4 Global Fields 44
- 2.5 Ray Class Field and Hilbert Class Fields 47
- 2.6 Narrow Ray Class Fields 50
- 2.7 Class Field Towers 55
- 3.1 Kummer and Artin-Schreier Extensions 62
- 3.2 Cyclotomic Function Fields 65
- 3.3 Drinfeld Modules of Rank 1 72
- 4.1 Function Fields from Hilbert Class Fields 76
- 4.2 Function Fields from Narrow Ray Class Fields 82
- 4.3 Function Fields from Cyclotomic Fields 108
- 4.4 Explicit Function Fields 113
- 4.5 Tables 118
- 5.1 Asymptotic Behavior of Towers 122
- 5.2 The Lower Bound of Serre 126
- 5.3 Further Lower Bounds for A(q[superscript m]) 133
- 5.4 Explicit Towers 136
- 5.5 Lower Bounds on A(2), A(3), and A(5) 138
- 6.1 Goppa's Algebraic-Geometry Codes 141
- 6.2 Beating the Asymptotic Gilbert-Varshamov Bound 150
- 6.3 NXL Codes 156
- 6.4 XNL Codes 160
- 6.5 A Propagation Rule for Linear Codes 164
- 7.1 Background on Stream Ciphers and Linear Complexity 170
- 7.2 Constructions of Almost Perfect Sequences 177
- 7.3 A Construction of Perfect Hash Families 184
- 7.4 Hash Families and Authentication Schemes 186
- 8.1 Background on (t, m, s)-Nets and (t,s)-Sequences 191
- 8.2 The Digital Method 197
- 8.3 A Construction Using Rational Places 203
- 8.4 A Construction Using Arbitrary Places 212
- A Curves and Their Function Fields 219
- Bibliography 227
- Index 240
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Cambridge University Press |
Auteur(s) | Harald Niederreiter, Chaoping Xing |
Parution | 16/10/2001 |
Nb. de pages | 246 |
Format | 15 x 22,8 |
Couverture | Broché |
Poids | 362g |
Intérieur | Noir et Blanc |
EAN13 | 9780521665438 |
ISBN13 | 978-0-521-66543-8 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse