Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Selfsimilar Processes
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Selfsimilar Processes

Selfsimilar Processes

Paul Embrechts, Makoto Maejima

122 pages, parution le 09/12/2002

Résumé

The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity translates into the equality in distribution between the process under a linear time change and the same process properly scaled in space, a simple scaling property that yields a remarkably rich theory with far-flung applications.

After a short historical overview, this book describes the current state of knowledge about selfsimilar processes and their applications. Concepts, definitions and basic properties are emphasized, giving the reader a road map of the realm of selfsimilarity that allows for further exploration. Such topics as noncentral limit theory, long-range dependence, and operator selfsimilarity are covered alongside statistical estimation, simulation, sample path properties, and stochastic differential equations driven by selfsimilar processes. Numerous references point the reader to current applications.

Though the text uses the mathematical language of the theory of stochastic processes, researchers and end-users from such diverse fields as mathematics, physics, biology, telecommunications, finance, econometrics, and environmental science will find it an ideal entry point for studying the already extensive theory and applications of selfsimilarity.

Contents

Chapter 1. Introduction
  • Definition of Selfsimilarity
  • Brownian Motion
  • Fractional Brownian Motion
  • Stable Lévy Processes
  • Lamperti Transformation
Chapter 2. Some Historical Background
  • Fundamental Limit Theorem
  • Fixed Points of Renormalization Groups
  • Limit Theorems (I)
Chapter 3. Selfsimilar Processes with Stationary Increments
  • Simple Properties
  • Long-Range Dependence (I)
  • Selfsimilar Processes with Finite Variances
  • Limit Theorems (II)
  • Stable Processes
  • Selfsimilar Processes with Infinite Variance
  • Long-Range Dependence (II)
  • Limit Theorems (III)
Chapter 4. Fractional Brownian Motion
  • Sample Path Properties
  • Fractional Brownian Motion for H = 1/2 is not a Semimartingale
  • Stochastic Integrals with respect to Fractional Brownian Motion
  • Selected Topics on Fractional Brownian Motion
Chapter 5. Selfsimilar Processes with Independent Increments
  • K. Sato's Theorem
  • Getoor's Example
  • Kawazu's Example
  • A Gaussian Selfsimilar Process with Independent Increments
Chapter 6. Sample Path Properties of Selfsimilar Stable Processes with Stationary Increments
  • Classification
  • Local Time and Nowhere Differentiability
Chapter 7. Simulation of Selfsimilar Processes
  • Some References
  • Simulation of Stochastic Processes
  • Simulating Lévy Jump Processes
  • Simulating Fractional Brownian Motion
  • Simulating General Selfsimilar Processes
Chapter 8. Statistical Estimation
  • Heuristic Approaches
  • Maximum Likelihood Methods
  • Further Techniques
Chapter 9. Extensions
  • Operator Selfsimilar Processes
  • Semi-Selfsimilar Processes

L'auteur - Paul Embrechts

Paul Embrechts, Professor of Insurance Mathematics at the Swiss Federal Institute of Technology (ETH) in Zurich, is the coauthor of Modelling Extremal Events for Insurance and Finance.

L'auteur - Makoto Maejima

Makoto Maejima is Professor of Mathematics at Keio University, Yokohama, Japan. He has published extensively on selfsimilarity and stable processes.

Caractéristiques techniques

  PAPIER
Éditeur(s) Princeton University Press
Auteur(s) Paul Embrechts, Makoto Maejima
Parution 09/12/2002
Nb. de pages 122
Format 16 x 24
Couverture Relié
Poids 353g
Intérieur Noir et Blanc
EAN13 9780691096278
ISBN13 978-0-691-09627-8

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription