
Principles of Mathematical Modelling
Ideas, Methods, Examples
Alexander A. Samarskii, Alexander P. Mikhailov
Résumé
Contents
Introduction
Part I
1. Elementary Mathematical Models
2. Examples of Models Following from the Fundamental Laws
of Nature
3. Variational Principles and Mathematical Models
4. Example of the Hierarchy of Models
5. The Universality of Mathematical Models
6. Several Models of Elementary Nonlinear Objects
Part II Derivation of Models from the Fundamental Laws of Nature
1. Conservation of the Mass of Substance
2. Conservation of Energy
3. Conservation of the Number of Particles
4. Joint Application of Several Fundamental Laws
Part III Models Deduced from Variational Principles, Hierarchies of Models
1. Equations of Motion, Variational Principles and
Conservation Laws in Mechanics
2. Models of Some Mechanical Systems
3. The Boltzmann Equation and its Derivative
Equations
Part IV Models of Some Hardly Formalizable Objects
1. Universality of Mathematical Models
2. Some Models of Financial and Economic Processes
3. Some Rivalry Models
4. Dynamics of Distribution of Power in Hierarchy
Part V
1. Application of Similarity Methods
2. The Maximum Principle and Comparison Theorems
3. An Averaging Method
4. On Transition to Discrete Models
Part VI Mathematical Modeling of Complex Objects
1. Problems of Technology and Ecology
2. Fundamental Problems of Natural Science
3. Computing Experiement With Models of Hardly Formalizable
Objects
References
Index
L'auteur - Alexander A. Samarskii
Professor Alexander A. Samarskii is Director of the Institute of Mathematical Modelling at the Russian Academy of Science and has been the leader of the Russian National Program for Mathematical Modelling in Science and Technology since 1985. He is a world-renowned researcher who has obtained outstanding results and contributed grately to the development of these subjects.
L'auteur - Alexander P. Mikhailov
Professor Alexander P Mikhailov is a Head of Department at the Institute of Mathematical Modelling at the Russian Academy of Science and is a Professor of M V Lomonosov Moscow State University. His research interests include mathematical physics, the theory of nonlinear phenomena, mathematical modelling of dissipative structures and mathematical modelling of socio-political processes.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Taylor and Francis Books |
Auteur(s) | Alexander A. Samarskii, Alexander P. Mikhailov |
Parution | 19/02/2002 |
Nb. de pages | 348 |
Format | 17,3 x 24,5 |
Couverture | Broché |
Poids | 625g |
Intérieur | Noir et Blanc |
EAN13 | 9780415272810 |
ISBN13 | 978-0-415-27281-0 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour la physique
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour la mécanique
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Mathématiques Logiciels de calcul
- Sciences Physique
- Sciences Physique Mécanique Mécanique des fluides
- Sciences Physique Mécanique Mécanique des solides
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques