
Geometric Fundamentals of Robotics
J.M. Selig - Collection Monographs in Computer Science
Résumé
Geometric Fundamentals of Robotics provides an elegant introduction to the geometric concepts that are important to applications in robotics. This second edition is still unique in providing a deep understanding of the subject: rather than focusing on computational results in kinematics and robotics, it includes significant state-of-the art material that reflects important advances in the field, connecting robotics back to mathematical fundamentals in group theory and geometry.
Key features:
- Begins with a brief survey of basic notions in algebraic and differential geometry, Lie groups and Lie algebras
- Examines how, in a new chapter, Clifford algebra is relevant to robot kinematics and Euclidean geometry in 3D
- Introduces mathematical concepts and methods using examples from robotics
- Solves substantial problems in the design and control of robots via new methods
- Provides solutions to well-known enumerative problems in robot kinematics using intersection theory on the group of rigid body motions
- Extends dynamics, in another new chapter, to robots with end-effector constraints, which lead to equations of motion for parallel manipulators
Geometric Fundamentals of Robotics serves a wide audience of graduate students as well as researchers in a variety of areas, notably mechanical engineering, computer science, and applied mathematics. It is also an invaluable reference text.
From a Review of the First Edition:
The majority of textbooks dealing with this subject cover various topics in kinematics, dynamics, control, sensing, and planning for robot manipulators. The distinguishing feature of this book is that it introduces mathematical tools, especially geometric ones, for solving problems in robotics. In particular, Lie groups and allied algebraic and geometric concepts are presented in a comprehensive manner to an audience interested in robotics. The aim of the author is to show the power and elegance of these methods as they apply to problems in robotics.
MathSciNet
Sommaire
- Preface
- Introduction
- Lie Groups
- Subgroups
- Lie Algebra
- A Little Kinematics
- Line Geometry
- Representation Theory
- Screw Systems
- Clifford Algebra
- A Little More Kinematics
- The Study Quadric
- Statics
- Dynamics
- Constrained Dynamics
- Differential Geometry
- References
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | J.M. Selig |
Collection | Monographs in Computer Science |
Parution | 22/03/2005 |
Édition | 2eme édition |
Nb. de pages | 398 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 733g |
Intérieur | Noir et Blanc |
EAN13 | 9780387208749 |
ISBN13 | 978-0-387-20874-9 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée Robotique
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie des groupes
- Sciences Mathématiques Mathématiques par matières Géométrie
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques
- Sciences Techniques Robotique
- Sciences Techniques Automatique