
Geometric Mechanics on Riemannian Manifolds
Applications to partial Differential Equations
Ovidiu Calin, Der-Chen Chang - Collection Applied and Numerical Harmonic Analysis
Résumé
Differential geometry techniques have very useful and important applications in partial differential equations and quantum mechanics. This work presents a purely geometric treatment of problems in physics involving quantum harmonic oscillators, quartic oscillators, minimal surfaces, and Schrodinger's, Einstein's and Newton's equations. Historically, problems in these areas were approached using the Fourier transform or path integrals, although in some cases (e.g., the case of quartic oscillators) these methods do not work. New geometric methods are introduced in the work that have the advantage of providing quantitative or at least qualitative descriptions of operators, many of which cannot be treated by other methods. And, conservation laws of the Euler-Lagrange equations are employed to solve the equations of motion qualitatively when quantitative analysis is not possible.
Main topics include: Lagrangian formalism on Riemannian manifolds; energy momentum tensor and conservation laws; Hamiltonian formalism; Hamilton-Jacob! theory; harmonic functions, maps, and geodesies; fundamental solutions for heat operators with potential; and a variational approach to mechanical curves. The text is enriched with good examples and exercises at the end of every chapter.
Geometric Mechanics on Riemannian Manifolds is a fine text for a course or seminar directed at graduate and advanced undergraduate students interested in elliptic and hyperbolic differential equations, differential geometry, calculus of variations, quantum mechanics, and physics. It is also an ideal resource for pure and applied mathematicians and theoretical physicists working in these areas.
Sommaire
- Preface
- Introductory Chapter
- Laplace Operator on Riemannian Manifolds
- Lagrangian Formalism on Riemannian Manifolds
- Harmonic Maps from a Lagrangian Viewpoint
- Conservation Theorems
- Hamiltonian Formalism
- Hamilton-Jacobi Theory
- Minimal Hypersurfaces
- Radially Symmetric Spaces
- Fundamental Solutions for Heat Operators with Potentials
- Fundamental Solutions for Elliptic Operators
- Mechanical Curves
- Bibliography
- Index
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Birkhäuser |
Auteur(s) | Ovidiu Calin, Der-Chen Chang |
Collection | Applied and Numerical Harmonic Analysis |
Parution | 27/01/2005 |
Nb. de pages | 278 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 576g |
Intérieur | Noir et Blanc |
EAN13 | 9780817643546 |
ISBN13 | 978-0-8176-4354-6 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse