
Matrix Theory
From Generalized Inverses to Jordan Form
Robert Piziak, P.L. Odell - Collection Pure and Applied Mathematics
Résumé
- Focuses on the development of the Moore-Penrose inverse, preparing students for more advanced treatises in matrix theory
- Uses concrete examples to make arguments more clear
- Presents MATLAB® examples and exercises throughout since it is often used when dealing with matrices
- Includes appendices that review basic linear algebra and related prerequisites
- Provides numerous homework problems and suggestions for further reading
In 1990, the National Science Foundation recommended that every college mathematics curriculum should include a second course in linear algebra. In answer to this recommendation, Matrix Theory: From Generalized Inverses to Jordan Form provides the material for a second semester of linear algebra that probes introductory linear algebra concepts while also exploring topics not typically covered in a sophomore-level class.
Tailoring the material to advanced undergraduate and beginning graduate students, the authors offer instructors flexibility in choosing topics from the book. The text first focuses on the central problem of linear algebra: solving systems of linear equations. It then discusses LU factorization, derives Sylvester's rank formula, introduces full-rank factorization, and describes generalized inverses. After discussions on norms, QR factorization, and orthogonality, the authors prove the important spectral theorem. They also highlight the primary decomposition theorem, Schur's triangularization theorem, singular value decomposition, and the Jordan canonical form theorem. The book concludes with a chapter on multilinear algebra.
With this classroom-tested text students can delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.
Sommaire
- The Idea Of Invers
- Generating Invertible Matrices
- Subspaces Associated To Matrices
- The Moore-Penrose Inverse
- Generalized Inverses
- Norms
- Inner Products
- Projections
- Spectral Theory
- Matrix Diagonalization
- Jordan Canonical Form
- Multilinear Matters
- A: Complex numbers
- B: Basic matrix operations
- C: Determinants
- D: A review of basics
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Chapman and Hall / CRC |
Auteur(s) | Robert Piziak, P.L. Odell |
Collection | Pure and Applied Mathematics |
Parution | 01/03/2007 |
Nb. de pages | 550 |
Format | 15,5 x 23,5 |
Couverture | Relié |
Poids | 895g |
Intérieur | Noir et Blanc |
EAN13 | 9781584886259 |
ISBN13 | 978-1-58488-625-9 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse