
Résumé
Lattices are discrete subgroups of maximal rank in a
Euclidean space. To each such geometrical object, we can
attach a canonical sphere packing which, assuming some
regularity, has a density. The question of estimating the
highest possible density of a sphere packing in a given
dimension is a fascinating and difficult problem: the
answer is known only up to dimension 3.
This book thus discusses a beautiful and central problem in
mathematics, which involves geometry, number theory, coding
theory and group theory, centering on the study of extreme
lattices, i.e. those on which the density attains a local
maximum, and on the so-called perfection property. Written
by a leader in the field, it is closely related to, though
disjoint in content from, the classic book by J.H. Conway
and NJ.A. Sloane, Sphere Packings, Lattices and Groups,
published in the same series as vol. 290.
Every chapter except the first and the last contains
numerous exercises. For simplicity those chapters involving
heavy computational methods contain only few exercises. It
includes appendices on Semi-Simple Algebras and Quaternions
and Strongly Perfect Lattices.
- General Properties of Lattices
- Geometric Inequalities
- Perfection and Eutaxy
- Root Lattices
- Lattices Related to Root Lattices
- Low-Dimensional Perfect Lattices
- The Voronoi Algorithm
- Hermitian Lattices
- The Configurations of Minimal Vectors
- Extremal Properties of Families of Lattices
- Group Actions
- Cross-Sections
- Extensions of the Voronoi Algorithm
- Numerical Data Appendix 1: Semi-Simple Algebras and Quaternions
- Appendix 2: Strongly Perfect Lattices
L'auteur - Jacques Martinet
University of Bordeaux, France
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Jacques Martinet |
Parution | 30/12/2002 |
Nb. de pages | 524 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 935g |
Intérieur | Noir et Blanc |
EAN13 | 9783540442363 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse