
Quaternions and Rotation Sequences
A Primer with Applications to Orbits, Aerospace and Virtual Reality
Résumé
Ever since the Irish mathematician William Rowan Hamilton introduced quaternions in the nineteenth century--a feat he celebrated by carving the founding equations into a stone bridge--mathematicians and engineers have been fascinated by these mathematical objects. Today, they are used in applications as various as describing the geometry of spacetime, guiding the Space Shuttle, and developing computer applications in virtual reality. In this book, J. B. Kuipers introduces quaternions for scientists and engineers who have not encountered them before and shows how they can be used in a variety of practical situations.
The book is primarily an exposition of the quaternion, a 4-tuple, and its primary application in a rotation operator. But Kuipers also presents the more conventional and familiar 3 x 3 (9-element) matrix rotation operator. These parallel presentations allow the reader to judge which approaches are preferable for specific applications. The volume is divided into three main parts. The opening chapters present introductory material and establish the book's terminology and notation. The next part presents the mathematical properties of quaternions, including quaternion algebra and geometry. It includes more advanced special topics in spherical trigonometry, along with an introduction to quaternion calculus and perturbation theory, required in many situations involving dynamics and kinematics. In the final section, Kuipers discusses state-of-the-art applications. He presents a six degree-of-freedom electromagnetic position and orientation transducer and concludes by discussing the computer graphics necessary for the development of applications in virtual reality.
Contents
- Historical Matters
- Algebraic Preliminaries
- Rotations in 3-space
- Rotation Sequences in R3
- Quaternion Algebra
- Quaternion Geometry
- Algorithm Summary
- Quaternion Factors
- More Quaternion Applications
- Spherical Trigonometry
- Quaternion Calculus for Kinematics and Dynamics
- Rotations in Phase Space
- A Quaternion Process
- Computer Graphics
L'auteur - Jack B. Kuipers
Jack B. Kuipers is Professor Emeritus of Mathematics at
Calvin College. In addition to publishing papers and
research notes on quaternions, he spent seventeen years in
the aerospace industry where his work included developing
applications of quaternion theory for aerospace systems. He
also developed a six-dimensional graphics system and, as a
consequence, is regarded by some as the founder of virtual
reality.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Princeton University Press |
Auteur(s) | Jack B. Kuipers |
Parution | 09/12/2002 |
Nb. de pages | 394 |
Format | 19 x 25,4 |
Couverture | Broché |
Poids | 896g |
Intérieur | Noir et Blanc |
EAN13 | 9780691102986 |
ISBN13 | 978-0-691-10298-6 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Algèbre
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Géométrie
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques