Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
The geometry of physics
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

The geometry of physics

The geometry of physics

An introduction

Theodore Frankel

694 pages, parution le 23/07/2004 (2eme édition)

Résumé

This book is intended to provide a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles, and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, elasticity theory, the geometry and topology of Kirchhoff's electric circuit laws, soap films, special and general relativity, the Dirac operator and spinors, and gauge fields, including Yang-Mills, the Aharonov-Bohm effect, Berry phase, and instanton winding numbers, quarks, and the quark model for mesons. Before a discussion of abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space; consequently, the book should be of interest also to mathematics students.

This book will be useful to graduate and advanced undergraduate students of physics, engineering and mathematics. It can be used as a course text or for self-study.

This second edition includes three new appendices, Appendix C, Symmetries, Quarks, and Meson Masses (which concludes with the famous Gell-Mann/Okubo mass formula); Appendix D, Representations and Hyperelastic Bodies; and Appendix E, Orbits and Morse-Bott Theory in Compact Lie Groups. Both Appendices C and D involve results from the theory of representations of compact Lie groups, which are developed here. Appendix E delves deeper into the geometry and topology of compact Lie groups.

Sommaire

  • Manifolds, Tensors and Exterior Forms
    • Manifolds and vector fields
    • Tensors and exterior forms
    • Integration of differential forms
    • The Lie derivative
    • The Poincaré lemma and potentials
    • Holonomic and non-holonomic constraints
  • Geometry and Topology
    • R3 and Minkowski space
    • The geometry of surfaces in R3
    • Covariant differentiation and curvature
    • Geodesics
    • Relativity, tensors, and curvature
    • Curvature and topology: Synge's theorem
    • Betti numbers and de Rham's theorem
    • Harmonic forms
  • Lie Groups, Bundles and Chern Forms
    • Lie groups
    • Vector bundles in geometry and physics
    • Fiber bundles, Gauss-Bonnet, and topological quantization
    • Connections and associated bundles
    • The Dirac equation
    • Yang-Mills fields
    • Betti numbers and covering spaces
    • Chern forms and homotopy groups
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Theodore Frankel
Parution 23/07/2004
Édition  2eme édition
Nb. de pages 694
Format 17,5 x 25,5
Couverture Broché
Poids 1240g
Intérieur Noir et Blanc
EAN13 9780521539272
ISBN13 978-0-521-53927-2

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription