
Advanced Engineering Mathematics
Dennis G. Zill, Michael R. Cullen
Résumé
Advanced Engineering Mathematics is a compendium of many mathematical topics, all of which are loosely related by the expedient of either being needed or useful in courses and subsequent careers in science and engineering. Consequently, this book represents the most accurate list of what constitutes "engineering mathematics." For flexibility in topic selection, the text is divided into five major sections that illustrate the backbone of science/engineering related mathematics. The first eight chapters of this book constitute a complete short course in ordinary differential equations.
- New to this Edition! The five major sections of the text open with an essay by an acknowledged expert in the field of engineering, this helps to provide students with real-life context to the course material.
- Real-world applications, current examples, and a many illustrations help students visualize important concepts and apply the material to everyday life.
- A complete Solutions Manual is available for the instructor, and a Student Solutions Manual that provides the answers to every third problem.
- Text includes boxed definitions and boxed theorems for easy reference.
- Zill devotes an entire section to Fast Fourier Transforms (FFT), and provides problems using the FFT. Mathematical Models for differential equations are also given special attention.
- Zill has provided Remark sections throughout the text that alert students to certain discussions that require special attention.
Contents
Part I: Ordinary Differential Equations
Chapter 1. Introduction to Differential Equations- Definitions and Terminology
- Initial-Value Problems
- Differential Equations as Mathematical Models
- Solution Curves Without the Solution
- Separable Variables
- Linear Equations
- Exact Equations
- Solutions by Substitutions
- A Numerical Solutions
- Linear Models
- Nonlinear
- Systems: Linear and Nonlinear Models
- Preliminary Theory: Linear and Nonlinear Models
- Reduction of Order
- Homogenous Linear Equations with Constant Coefficients
- Undetermined
- Variations of Parameters
- Cauchy-Euler Equation
- Nonlinear Equations
- Linear Models: Initial-Value Problems
- Linear Models: Boundary-Value Problems
- Nonlinear Models
- Solving Systems of Linear Models
- Definition of the Laplace Transform
- The Inverse Transform and Transforms of Derivations
- Translation Theorems
- Additional Operational Properties
- Dirac Delta Function
- Solving Systems of Linear Equations
- Solutions about Ordinary Points
- Solutions about Singular Points
- Two Special Equations
- Euler Methods and Error Analysis
- Runge-Kutta Methods
- Methods
- Higher-Order Equations and Systems
- Second-Order Boundary-Value Problems
Part II: Vectors, Matrices, and Vector Calculus
Chapter 7. Vectors- Vectors in 2-Space
- Vectors in 3-Space
- The Dot Product
- The Cross Product
- Lines and Planes in 3-Space
- Vector Spaces
- Matrix Algebra
- Systems of Linear Algebraic Equations
- Rank of a Matrix
- Determinants
- Properties of Determinants
- Inverse of a Matrix
- Cramer's Rule
- The Eigenvalue Problem
- Power of Matrices
- Orthogonal Matrices
- Approximation of Eigenvalues
- Diagonalization
- Cryptography
- An Error-Correcting Code
- Method of Least Squares
- Discrete Compartmental Models
- Vector Functions
- Motion on a Curve
- Curvature and Components of Acceleration
- Functions of Several Variables
- The Directional Derivative
- Planes and Normal Lines
- Divergence and Curl
- Line Integrals
- Line Integrals Independent of the Path
- Review of Double Integrals
- Double Integrals in Polar Coordinates
- Green's Theorem
- Surface Integrals
- Strokes' Theorem
- Review of Triple Integrals
- Divergence Theorem
- Change of Variables in Multiple Integrals
Part III: Systems of Differential Equations
Chapter 10. System of Linear Differential Equations- Preliminary
- Homogeneous Linear Systems
- Solution by Diagonalization
- Nonhomogenous Linear Systems
- Matrix Exponential
- Autonomous Systems, Critical Points, and Periodic Solutions
- Stability of Linear Systems
- Linearization and Local Stability
- Modeling Using Autonomous Systems
- Periodic Solutions, Limit Cycles, and Global Stability
Part IV: Fourier Series and Partial Differential Equations
Chapter 12. Orthogonal Functions and Fourier Series- Orthogonal Functions
- Fourier Series
- Fourier Cosine and Sine Series
- Complex Fourier Series and Frequency Spectrum
- Sturm-Liouville Problem
- Bessel and Legendre Series
- Separable Partial Differential Equations
- Classical Equations and Boundary-Value Problems
- Heat Equation
- Wave Equation
- Laplace's Equation
- Nonhomogeneous Equations and Boundary Conditions
- Orthogonal Series Expansions
- Fourier Series in Two Variable
- Problems Involving Laplace's Equation in Polar Coordinates
- Problems in Polar and Cylindrical Coordinates: Bessel Functions
- Problems in Spherical Coordinates: Legendre Polynomials
- Error Function
- Applications of the Laplace Transform
- Fourier Integral
- Fourier Transforms
- Fast Fourier Transform
- Elliptic Equations
- Parabolic Equations
- Hyperbolic Equations
Part V: Complex Analysis
Chapter 17. Functions of a Complex Variable- Complex Numbers
- Form of Complex Numbers; Power and Roots
- Sets of Points in the Complex Plane
- Functions of a Complex Variable; Analyticity
- Cauchy-Reimann Equations
- Exponential and Logarithmic Functions
- Trigonometric and Hyperbolic Functions
- Inverse Trigonometric and Hyperbolic Functions
- Contour Integrals
- Cauchy-Goursat Theorem
- Independence of Path
- Cauchy's Integral Formula
- Sequences and Series
- Taylor Series
- Laurent Series
- Zeros and Poles
- Residues and Residue Theorem
- Evaluation of Real Integrals
- Complex Functions as Mappings
- Conformal Mapping and the Dirichlet Problem
- Linear Fractional Transformations
- Schwarz-Christoffel Transformations
- Poisson Integral Formulas
- Applications
Appendix II Gamma Function; Exercises
Appendix III Table of Laplace Transforms
Appendix IV Conformal Mappings
Appendix V Some BASIC Programs for Numerical Methods
Selected Answers for Odd-Numbered Problems
L'auteur - Dennis G. Zill
Loyola Marymount University
Ph.D. in applied mathematics from Iowa State University.
Currently professor of mathematics and former chair of the
math dept at Loyola Marymount University in Los Angeles.
Dennis Zill's research interests include Applied
Mathematics, Special Functions, and Integral
Transforms.
L'auteur - Michael R. Cullen
Michael R. Cullen, of Loyola Marymount University
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Jones and Bartlett Computer Science |
Auteur(s) | Dennis G. Zill, Michael R. Cullen |
Parution | 01/01/2000 |
Édition | 2eme édition |
Nb. de pages | 1038 |
Format | 20,5 x 25,4 |
Couverture | Broché |
Poids | 1842g |
Intérieur | 2 couleurs |
EAN13 | 9780763713577 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse fonctionnelle
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques par matières Analyse Cours
- Sciences Mathématiques Mathématiques par matières Analyse Exercices
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Modélisation
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Physique Physique fondamentale Systèmes dynamiques