
Computers, Rigidity, and Moduli
The Large-Scale Fractal Geometry of Riemannian Moduli Space
Résumé
This book is the first to present a new area of mathematical research that combines topology, geometry, and logic. Shmuel Weinberger seeks to explain and illustrate the implications of the general principle, first emphasized by Alex Nabutovsky, that logical complexity engenders geometric complexity. He provides applications to the problem of closed geodesics, the theory of submanifolds, and the structure of the moduli space of isometry classes of Riemannian metrics with curvature bounds on a given manifold. Ultimately, geometric complexity of a moduli space forces functions defined on that space to have many critical points, and new results about the existence of extrema or equilibria follow.
The main sort of algorithmic problem that arises is recognition: is the presented object equivalent to some standard one? If it is difficult to determine whether the problem is solvable, then the original object has doppelgängers--that is, other objects that are extremely difficult to distinguish from it.
Many new questions emerge about the algorithmic nature of known geometric theorems, about "dichotomy problems," and about the metric entropy of moduli space. Weinberger studies them using tools from group theory, computability, differential geometry, and topology, all of which he explains before use. Since several examples are worked out, the overarching principles are set in a clear relief that goes beyond the details of any one problem.
L'auteur - Shmuel Weinberger
Shmuel Weinberger is Professor of Mathematics at the University of Chicago. He is the author of The Topological Classification of Stratified Spaces.
Sommaire
- Introduction and Overview
- Group Theory
- Designer Homology Spheres
- The Roles of Entropy
- The Large-Scale Fractal Geometry of Riemannian Moduli Space
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Princeton University Press |
Auteur(s) | Shmuel Weinberger |
Parution | 26/01/2005 |
Nb. de pages | 174 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 436g |
Intérieur | Noir et Blanc |
EAN13 | 9780691118895 |
ISBN13 | 978-0-691-11889-5 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Techniques de programmation Logique
- Sciences Mathématiques Mathématiques par matières Algèbre Algèbre et groupes de lie
- Sciences Mathématiques Mathématiques par matières Algèbre Théorie de Galois
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Géométrie
- Sciences Mathématiques Mathématiques par matières Géométrie Géométrie non euclidienne
- Sciences Mathématiques Mathématiques par matières Logique
- Sciences Mathématiques Mathématiques par matières Logique Logique floue
- Sciences Mathématiques Mathématiques par matières Logique Algèbre de Boole
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Mathématiques Mathématiques par matières Topologie
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques