
Introduction to Circle Packing
The Theory of Discrete Analytic Functions
Résumé
The topic of 'circle packing' was born of the computer age but takes its inspiration and themes from core areas of classical mathematics. A circle packing is a configuration of circles having a specified pattern of tangencies, as introduced by William Thurston in 1985. This book lays out their study, from first definitions to latest theory, computations, and applications. The topic can be enjoyed for the visual appeal of the packing images - over 200 in the book - and the elegance of circle geometry, for the clean line of theory, for the deep connections to classical topics, or for the emerging applications. Circle packing has an experimental and visual character which is unique in pure mathematics, and the book exploits that to carry the reader from the very beginnings to links with complex analysis and Riemann surfaces. There are intriguing, often very accessible, open problems throughout the book and seven Appendices on subtopics of independent interest. This book lays the foundation for a topic with wide appeal and a bright future.
- Foundational: this is the first book on a fascinating new topic and it lays out a clear formulation from definitions to applications
- Accessible: it has four parts with increasing sophistication, accompanied by numerous illustrations
- There are seven appendices on stand-alone topics which are widely accessible and suitable for independent projects
Sommaire
- I An overview of circle packing
- 1 A circle packing menagerie
- 2 Circle packings in the wild
- II Rigidity : maximal packings
- 3 Preliminaries : topology, combinatorics, and geometry
- 4 Statement of the fundamental result
- 5 Bookkeeping and monodromy
- 6 Proof for combinatorial closed discs
- 7 Proof for combinatorial spheres
- 8 Proof for combinatorial open discs
- 9 Proof for combinatorial surfaces
- III Flexibility : analytic functions
- 10 The intuitive landscape
- 11 Discrete analytic functions
- 12 Construction tools
- 13 Discrete analytic functions on the disc
- 14 Discrete entire functions
- 15 Discrete rational functions
- 16 Discrete analytic functions on Riemann surfaces
- 17 Discrete conformal structure
- 18 Random walks on circle packings
- IV Resolution : approximation
- 19 Thurston's conjecture
- 20 Extending the Rodin-Sullivan theorem
- 21 Approximation of analytic functions
- 22 Approximation of conformal structures
- 23 Applications
- App. A Primer on classical complex analysis
- App. B The ring lemma
- App. C Doyle spirals
- App. D The Brooks parameter
- App. E Inversive distance packings
- App. F Graph embedding
- App. G Square grid packings
- App. H Schwarz and buckyballs
- App. I CirclePack
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Cambridge University Press |
Auteur(s) | Kenneth Stephenson |
Parution | 15/06/2005 |
Nb. de pages | 370 |
Format | 18 x 26 |
Couverture | Relié |
Poids | 930g |
Intérieur | Noir et Blanc |
EAN13 | 9780521823562 |
ISBN13 | 978-0-521-82356-2 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse