Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Measure Theoretic Laws for Lim Sup Sets
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Measure Theoretic Laws for Lim Sup Sets

Measure Theoretic Laws for Lim Sup Sets

Victor Beresnevich, Detta Dickinson, Sanju Velani - Collection Memoirs of the American Mathematical Society

92 pages, parution le 29/06/2006

Résumé

Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\p$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$ to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarník concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantine approximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarník's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarník's theorem opens up the Duffin-Schaeffer conjecture for Hausdorff measures.

Sommaire

  • Introduction
  • Ubiquity and conditions on the general setp
  • The statements of the main theorems
  • Remarks and corollaries to Theorem 1
  • Remarks and corollaries to Theorem 2
  • The classical results
  • Hausdorff measures and dimension
  • Positive and full $m$-measure sets
  • Proof of Theorem 1
  • Proof of Theorem 2: $0\leq G < \infty$
  • Proof of Theorem 2: $G= \infty$
  • Applications
  • Bibliography
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) American Mathematical Society (AMS)
Auteur(s) Victor Beresnevich, Detta Dickinson, Sanju Velani
Collection Memoirs of the American Mathematical Society
Parution 29/06/2006
Nb. de pages 92
Format 17,5 x 25
Couverture Broché
Poids 223g
Intérieur Noir et Blanc
EAN13 9780821838273
ISBN13 978-0-8218-3827-3

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription