
Symplectic Amalgams
Springer monographs in mathematics
Peter Rowley, Christopher Parker
Résumé
The latter half of the twentieth century saw dramatic advances in group theory, particularly in finite group theory. During this time, the amalgam method emerged as the most powerful and promising tool and is playing a central role in the revision of the classification of finite simple groups. In this book, the authors chart the rise of the "amalgam method" and aim to classify symplectic amalgams with the intention of providing a complete overview of research in the field that will be accessible to both specialists and non-specialists alike. The aim of this book is the classification of symplectic amalgams - structures which are intimately related to the finite simple groups. In all there sixteen infinite families of symplectic amalgams together with 62 more exotic examples. The classification touches on many important aspects of modern group theory: - p-local analysis - the amalgam method - representation theory over finite fields; and - properties of the finite simple groups. The account is for the most part self-contained and the wealth of detail makes this book an excellent introduction to these recent developments for graduate students, as well as a valuable resource and reference for specialists in the area.
Contents- 1. Introduction
- 2. Preliminaries
- 3. The Structure of SL2 ( q ) and its Modules
- 4. Elementary Properties of Symplectic Amalgams
- 5. The Structure of Qa
- 6. The Lb-Chief Factors in Vb
- 7. Reduced Symplectic Amalgams
- 8. The Largest Normal pSubgroup of Lb/Qb
- 9. The Components of Lb/Qb
- 10. The Reduction to Quasisimple when CUa (Ua / Za) Qb
- 11. A First Look at the Amalgams with oe Vb / Z (Vb) oe = q4
- 12. The Story so Far
- 13. Groups of Lie-Type
- 14. Modules for Groups of Lie Type
- 15. Sporadic Simple Groups and their Modules
- 16. Alternating Groups and their Modules
- 17. Rank One Groups
- 18. Lie-Type Groups in Characteristic p and Rank 2
- 19. Lie-Type Groups and Natural Modules
- 20. Lie Type Groups in Characteristic not p
- 21. Alternating Groups
- 22. Sporadic Simple Groups
- 23. The Proof of the Main Theorems
- Index.
L'auteur - Peter Rowley
Peter Rowley is Professor of Mathematics at UMIST, Manchester, UK.
L'auteur - Christopher Parker
Christopher Parker is a Senior Lecturer in Mathematics at the University of Birmingham, UK
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Peter Rowley, Christopher Parker |
Parution | 08/07/2002 |
Nb. de pages | 362 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 708g |
Intérieur | Noir et Blanc |
EAN13 | 9781852334307 |
ISBN13 | 978-1-85233-430-7 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse