
Front Tracking for Hyperbolic Conservation Laws
Hedge Holden, Nils Henrik Risebro
Résumé
Hyperbolic conservation laws are central in the theory
of nonlinear partial differential equations, and in many
applications in science and technology. In this book the
reader is given a detailed, rigorous, and self-contained
presentation of the theory of hyperbolic conservation laws
from the basic theory up to the research front. The
approach is constructive, and the mathematical approach
using front tracking can be applied directly as a numerical
method.
After a short introduction on the fundamental properties of
conservation laws, the theory of scalar conservation laws
in one dimension is treated in detail, showing the
stability of the Cauchy problem using front tracking. The
extension to multidimensional scalar conservation laws is
obtained using dimensional splitting. Inhomogeneous
equations and equations with diffusive terms are included
as well as a discussion of convergence rates. The classical
theory of Kruzkov and Kuznetsov is covered. Systems of
conservation laws in one dimension are treated in detail,
starting with the solution of the Riemann problem.
Solutions of the Cauchy problem are proved to exist in a
constructive manner using front tracking, amenable to
numerical computations.
The book includes a detailed discussion of the very recent
proof of wellposedness of the Cauchy problem for
one-dimensional hyperbolic conservation laws.
The book includes a chapter on traditional finite
difference methods for hyperbolic conservation laws with
error estimates and a section on measure valued solutions.
Extensive examples are given, and many exercises are
included with hints and answers. Additional background
material not easily available elsewhere is given in
appendices.
- 1. Introduction
- 2. Scalar Conservation Laws
- 3. A Short Course in Difference Methods
- 4. Multidimensional Scalar Conservation Laws
- 5. The Riemann Problem for Systems
- 6. Existence of Solutions of the Cauchy Problem
- 7. Wellposedness of the Cauchy Problem
- Appendix A: Total Variation, Compactedness, etc
- Appendix B: The Method of Vanishing Viscosity
- Appendix C: Answers and Hints
- References
- Index.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Hedge Holden, Nils Henrik Risebro |
Parution | 05/08/2002 |
Nb. de pages | 364 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 655g |
Intérieur | Noir et Blanc |
EAN13 | 9783540432890 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse