
Résumé
Topics include an introduction to inner product spaces, normed and metric spaces, isometries and completion of a metric space, topological and Banach spaces, equivalent norms and factor spaces, complete orthonormal sets, the Hahn-Banach theorem and its consequences, weak convergence and bounded linear transformations, spectral notions, adjoints and sesquilinear functionals, orthogonal projections and positive definite operators, and many other related subjects. Each chapter concludes with exercises intended to test and reinforce the reader's understanding of the material covered.
Prerequisites for optimum comprehension of the text are undergraduate courses in linear algebra and advanced calculus; for the convenience of students, a brief glossary of definitions and notations relevant to linear algebra is included. Proofs of all theorems are as detailed as possible. A helpful bibliography and index of symbols complete this clear and well-written introductory volume.
Contents
- Introduction to Inner Product Spaces
- Orthonormal Projections and the Spectral Theorem for Normal Transformations
- Normed Spaces and Metrics Spaces
- Isometries and Completion of a Metric Space
- Compactness in Metric Spaces
- Category and Separable Spaces
- Topological Spaces
- Banach Spaces, Equivalent Norms, and Factor Spaces
- Commutative Convergence, Hilbert Spaces, and Bessel's Inequality
- Complete Orthonormal Sets
- The Hahn-Banach Theorem
- Consequences of the Hahn-Banach Theorem
- The Conjugate Space of C[a, b]
- Weak Convergence and Bounded Linear Transformations
- Convergence in L(X, Y) and the Principle of Uniform Boundedness
- Closed Transformations and the Closed Graph Theorem
- Closures, Conjugate Transformations, and Complete Continuity
- Spectral Notions
- Introduction to Banach Algebras
- Adjoints and Sesquilinear Functionals
- Some Spectral Results for Normal and Completely Continuous Operators
- Orthogonal Projections and Positive Definite Operators
- Square Roots and a Spectral Decomposition Theorem
- Spectral Theorem for Completely Continuous Normal Operators
- Spectral Theorem for Bounded, Self-Adjoint Operators
- A Second Approach to the Spectral Theorem for Bounded, Self-Adjoint Operators
- A Third Approach to the Spectral Theorem for Bounded, Self-Adjoint Operators and some consequences
- Spectral Theorem for Bounded, Normal Operators
- Spectral Theorem for Unbounded, Self-Adjoint Operators
Index of Symbols
Subject Index
Errata
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Dover |
Auteur(s) | Georges Bachman, Lawrence Narici |
Parution | 21/11/2001 |
Nb. de pages | 532 |
Format | 15,5 x 23,3 |
Couverture | Broché |
Poids | 666g |
Intérieur | Noir et Blanc |
EAN13 | 9780486402512 |
ISBN13 | 978-0-486-40251-2 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse complexe
- Sciences Mathématiques Mathématiques par matières Analyse Analyse fonctionnelle
- Sciences Mathématiques Mathématiques par matières Analyse Analyse de Fourier
- Sciences Mathématiques Mathématiques par matières Analyse Cours
- Sciences Mathématiques Mathématiques par matières Analyse Exercices
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral