
Introduction to Operator Space Theory
Lecture notes series 294
Résumé
The theory of operator spaces is very recent and can be
described as a non-commutative Banach space theory. An
‘operator space' is simply a Banach space with an
embedding into the space B(H) of all bounded operators on a
Hilbert space H. The first part of this book is an
introduction with emphasis on examples that illustrate
various aspects of the theory. The second part is devoted
to applications to C*-algebras, with a systematic
exposition of tensor products of C*-algebras. The third
(and shorter) part of the book describes applications to
non self-adjoint operator algebras, and similarity
problems.
In particular the author's counterexample to the
‘Halmos problem' is presented, as well as work on the
new concept of ‘length' of an operator algebra.
Graduate students and professional mathematicians
interested in functional analysis, operator algebras and
theoretical physics will find that this book has much to
offer.
Contents
- Part I. Introduction to Operator Spaces
- Completely bounded maps
- Minimal tensor product
- Minimal and maximal operator space structures on a Banach space
- Projective tensor product
- The Haagerup tensor product
- Characterizations of operator algebras
- The operator Hilbert space
- Group C*-algebras
- Examples and comments
- Comparisons
- Part II. Operator Spaces and C*-tensor products
- C*-norms on tensor products
- Nuclearity and approximation properties
- C*
- Kirchberg's theorem on decomposable maps
- The weak expectation property
- The local lifting property
- Exactness
- Local reflexivity
- Grothendieck's theorem for operator spaces
- Estimating the norms of sums of unitaries
- Local theory of operator spaces
- B(H) * B(H)
- Completely isomorphic C*-algebras
- Injective and projective operator spaces
- Part III. Operator Spaces and Non Self-Adjoint Operator
Algebras
- Maximal tensor products and free products of non self-adjoint operator algebras
- The Blechter-Paulsen factorization
- Similarity problems
- The Sz-nagy-halmos similarity problem
- Solutions to the exercises
- References
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Cambridge University Press |
Auteur(s) | Gilles Pisier |
Parution | 21/08/2003 |
Nb. de pages | 478 |
Format | 15 x 23 |
Couverture | Broché |
Poids | 640g |
Intérieur | Noir et Blanc |
EAN13 | 9780521811651 |
ISBN13 | 978-0-521-81165-1 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse complexe
- Sciences Mathématiques Mathématiques par matières Analyse Analyse fonctionnelle
- Sciences Mathématiques Mathématiques par matières Analyse Analyse de Fourier
- Sciences Mathématiques Mathématiques par matières Analyse Cours
- Sciences Mathématiques Mathématiques par matières Analyse Exercices
- Sciences Mathématiques Mathématiques par matières Calcul différentiel et intégral